

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Li, J., Liu, C., & Zhou, R. et al. (2011). Top-k keyword search over probabilistic XML data.

Originally published in Proceedings of the International Conference on Data Engineering

(ICDE 2010), Hannover, Germany, 11–16 April 2011 (pp. 673–684). Piscataway, NJ: IEEE.

Available from: http://dx.doi.org/10.1109/ICDE.2011.5767875

Copyright © 2011 IEEE.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/158794

Top-k Keyword Search over
Probabilistic XML Data
Jianxin Li1, Chengfei Liu1, Rui Zhou1, Wei Wang2

1Swinburne University of Technology, Australia
{jianxinli, cliu, rzhou}@swin.edu.au

2University of New South Wales, Australia
weiw@cse.unsw.edu.au

Abstract—Despite the proliferation of work on XML keyword
query, it remains open to support keyword query over probabilis-
tic XML data. Compared with traditional keyword search, it is
far more expensive to answer a keyword query over probabilistic
XML data due to the consideration of possible world semantics.

In this paper, we firstly define the new problem of studying
top-k keyword search over probabilistic XML data, which is
to retrieve k SLCA results with the k highest probabilities of
existence. And then we propose two efficient algorithms. The
first algorithm PrStack can find k SLCA results with the k
highest probabilities by scanning the relevant keyword nodes
only once. To further improve the efficiency, we propose a second
algorithm EagerTopK based on a set of pruning properties which
can quickly prune unsatisfied SLCA candidates. Finally, we
implement the two algorithms and compare their performance
with analysis of extensive experimental results.

I. I NTRODUCTION

Uncertainty is widespread in many web applications, such
as information extraction, information integration, web data
mining, etc. The flexibility of XML data model allows a
natural representation of uncertain data. As a result, many
probabilistic XML models are designed and analyzed [1], [2],
[3], [4], [5], [6], [7]. In addition to the models themselves,
uncertain data management is also becoming a critical issue
in query evaluation [2], [6], [8], [9], [10], [11], algebraic
manipulation [3] and updates [1], [6].

In this paper, we adopt a popular probabilistic XML model,
PrXML{ind,mux} [9], which was first discussed in [2]. In
this model, a probabilistic XML document (p-document) is
considered as a labelled tree, consisting of two types of nodes,
ordinary nodes representing the actual data anddistributional
nodes representing the probability distribution of the child
nodes. Distributional nodes have two types, IND and MUX.
An IND node has children that areindependent of each other,
while the children of a MUX node aremutually-exclusive, that
is, at most one child can exist in a random instance document
(called apossible world). A real number from (0,1] is attached
on each edge in the XML tree, indicating the conditional
probability that the child node will appear under the parent
node given the existence of the parent node. An example of
p-document is given in Fig. 1(a). Unweighted edges have 1 as
the default conditional probability.

To query a p-document, existing works focused on using
structured XML queries [8], [10], e.g., twig queries. It remains

open whether keyword queries can be supported, whereas to
provide keyword search support for users is appealing, because
(1) it can relieve users from learning complex structured
queries; (2) it does not require users to know the schema of a
p-document. (A p-document may be integrated from multiple
data sources, so it could be difficult for users to know its
schema in advance).

A widely accepted semantics to model keyword search
result on a deterministic XML treeT is Smallest Lowest
Common Ancestor (SLCA) semantics [12], [13]. A nodev

is regarded as an SLCA if (a) the subtree rooted at the node
v, denoted asTsub(v), contains all the keywords, and (b) there
does not exist a descendant nodev′ of v such thatTsub(v

′)
contains all the keywords. Consider a keyword query{k1, k2}
on the p-document in Figure 1(a), the SLCAs are{IND3,
MUX3}. However, for keyword search on a p-document, to
naively return the SLCA nodes as the answers will bring in
the following problems.

A

IND2

B1 B2

B4

B3C1

C2

C3

C4

C5

D1

D2 E1

E2

MUX2 MUX3

IND1

IND3

0.3
0.25

0.15

0.25

0.8
0.6 0.5

0.5
0.1

0.3

0.7 0.9

0.5 0.5

k1

k1

k1

k1

k1

k1

k2

k2

k2

k2

k2O1
O14

O17

O16O15

O13

O12O11

O10
O9

O8

O7

O6

O5O4

O3

O2
O20

O21

O22

MUX1

B5k1

O18

C6

O19

(a) A p-document

A

MUX1

IND2

B1
B2

B4

B3C1

C2

C3

C4

C6

D1

D2 E1

E2

MUX2
MUX3

IND1

IND3

0.3
0.25

0.15

0.25

0.8

0.6
0.5

0.5
0.1

0.3

0.7 0.9

0.5
0.5

k1

k1

k1

k1

k1

k1

k2

k2

k2

k2

k2

1

1.M1

1.M1.I1

1.M1.I1.1

1.M1.I2

1.M1.I2.1 1.M1.I2.2

1.M1.I2.1.M1

1.M1.I2.1.M1.1
1.M1.I2.1.M1.I2

1.M1.I2.1.M1.3

1.M1.I2.1.M1.I2.1 1.M1.I2.1.M1.I2.2

1.M1.3

1.M1.4

1.M1.4.1

1.M1.4.3.M1
1.M1.4.2

1.M1.4.3.M1.1 1.M1.4.3.M1.2

1 0.15 0.8
1 0.25 0.5

1 0.3 1

1 0.3 1

1 0.25 0.6 1 0.5
1 0.25 0.6 1 0.3

1 0.25 0.6 1 0.1 0.7 1 0.25 0.6 1 0.1 0.9

C5

B5 k1

1.M1.4.3.2
1 0.3 1 1

1.M1.4.3

1 0.3 1 1 0.5 1 0.3 1 1 0.5

(b) An encoded p-document

Fig. 1. An example of probabilistic XML document

False Positive ProblemCase 1: False SLCA node is intro-
duced by MUX semantics, e.g., nodeMUX3 is an SLCA, for

B4 containsk1, C6 containsk2, but MUX3 is a false positive,
becauseB4 andC6 cannot appear together under MUX3. Case
2: Distributional nodes are identified as SLCAs, e.g., SLCA
nodes{IND3, MUX3} are all distributional nodes, but it is
natural to constrain results to be ordinary nodes.

False Negative ProblemCase 1: False negatives are caused
by false positives, e.g., since{IND3, MUX3} are wrongly
identified as SLCAs, more proper answers{C1, C5} are ig-
nored according to SLCA semantics. Case 2: All the ancestors
of a traditional SLCAvslca in a p-document may become
SLCA answers, becausevslca may not appear in some possible
worlds, which brings in the possibility thatvslca’s ancestors
may be SLCA answers, e.g.,C3 is an SLCA in some possible
worlds containingB4 but notC6, becauseC5 is not an SLCA
for those possible worlds.

From the above discussion, we can discover that the failure
for enforcing traditional SLCA semantics on a p-document is
due to the variety of possible worlds of the p-document. In
other words, a node may be an SLCA in one possible world,
but not in another. Consequently, an appropriate modification
is to model keyword search result on a p-document by a set of
2-tuples. Each 2-tuple(v, f) is composed ofv as a node in the
p-document andf as the probability (confidence) forv to be
an SLCA in the possible worlds. To be specific, ifv appears as
an SLCA in multiple possible worlds, the probability of those
possible worlds will be aggregated to give the confidence for
v to be an SLCA on the p-document. However, the answer
set may be empty or too large if we do not set a proper
probability threshold tof . Such a threshold is likely to be
different for different datasets, and is hard to determine in
advance. It is natural to give usersk answers with the highest
probabilities, wherek can be specified by the users. To sum up,
the problem we will study in this paper is, given a p-document,
a set of keywords and a positive integerk, we want to findk
nodes from the p-document with the highest probabilities tobe
SLCAs. Note that if there are onlyk′ (k′ < k) SLCA nodes
with non-zero probabilities, we only return thesek′ answers.

There are two major challenges: how to compute the proba-
bility for a node to be an SLCA and how to find out the SLCA
nodes with top-k probabilities. A straightforward solution is
to firstly generate the possible worlds and their corresponding
probabilities from the given p-document, and then evaluate
the keyword query on each possible world and combine the
SLCA results on all the possible worlds, and at the same time
probabilities are aggregated if necessary. Finally, to pick out k
SLCA answers with the highest probabilities. Unfortunately,
this method is time-consuming or even infeasible to process
a p-document which has encoded a substantial number of
possible world variations. More efficient and feasible solutions
are sought-after.

To tackle the first challenge, we propose how to compute
the SLCA probability for a node on a p-document without
generating the possible worlds for the p-document. The com-
putation follows a bottom-up manner. For each nodev in the
p-document, we compute a probability distribution table to
record the probability forv to contain all or none or part

of the query keywords. Such tables are easy to obtain for
leaf nodes in the p-document. For an internal nodev, the
probability distribution table ofv is computed by combining
the probability distribution tables ofv’s children according
to v’s type. Different node types (IND, MUX, ordinary) are
treated differently. Section III explains the details.

To target the second challenge, we propose two algorithms,
PrStack and EagerTopK, to find the top-k probabilistic SLCA
nodes without generating possible worlds. PrStack algorithm
scans all the keyword match nodes once. It uses a stack to
guarantee that the SLCA probability of a node is determined
after all the SLCA probabilities of the node’s child nodes
have been determined. A result heap is used to collect top-k

SLCA answers. While EagerTopK does not scan the keyword
match nodes in document order. It first computes traditional
SLCAs disregarding the node types of the SLCAs and their
probabilities. Then it traces from these preliminary SLCA
results upward towards the root of the document, picks out
the ordinary nodes as SLCA answers and computes their
probabilities. During the process, several probability upper
bounds can be used to quickly discard candidate SLCA results
without physically computing their probabilities, because their
probability upper bounds are already less than the currentkth
highest probability. Section IV introduces the algorithmsin
detail.

We summarize the contributions of this paper as follows:
• To the best of our knowledge, this is the first work that

studies keyword search over probabilistic XML data.
• We have discussed the principles to calculate the SLCA

probability for an element when its sub-elements follow
independent distribution or mutual-exclusive distribution.
The calculation does not require the generation of possi-
ble worlds.

• We have proposed two algorithms, PrStack and Eager-
TopK, to compute top-k SLCA results with the highest
probabilities without generating possible worlds. PrStack
is easy to implement, while EagerTopK is relatively more
complex, but terminates earlier in most cases, because
EagerTopK uses tighter bounds to prune unpromising
results.

• Experimental evaluation has demonstrated the efficiency
of the proposed algorithms.

The rest of this paper is organized as follows. In Section II,
we introduce the probabilistic XML model and the formal
semantics of keyword search result on a probabilistic XML
document. Section III first presents an encoding scheme with
the consideration of distributional nodes, then discusseshow
to compute the SLCA probability in the presence of different
distribution cases. In Section IV, we propose two algorithms
to find top-k SLCA answers in terms of their probabilities.
We report the experiment results in Section V. Section VI
discusses related works and Section VII concludes the paper.

II. PROBLEM DEFINITIONS

Probabilistic XML A probabilistic XML document (p-
document) defines a probability distribution over a space of

deterministic XML documents. Each deterministic document
belonging to this space is called a possible word. A p-
document represented as a labelled tree hasordinary and
distributional nodes. Ordinary nodes are regular XML nodes
and they may appear in deterministic documents, while dis-
tributional nodes are only used for defining the probabilistic
process of generating deterministic documents and they do
not occur in those documents. As we adopt PrXML{ind,mux}

as the probabilistic XML model, two types of distributional
nodes,IND andMUX, may appear in a p-document.

Example 1: Consider the p-documentT shown in Fig-
ure 1(a). Ordinary nodes are shown with their tag names, e.g.,
B1, B2, C1, andC2. For the two types of distributional nodes,
MUX is depicted as rectangular boxes with rounded corners
and IND is displayed as circles. Consider theIND2 node. It
has two childrenC1 and B2 with the existence probabilities
0.6 and 0.5, respectively. Thus, the absence probability for
neitherC1 nor B2 appearing is (1-0.6)*(1-0.5)=0.2. Consider
the MUX2 node that has three children, namely,D1, E2 and
the IND3 node. Their existence probabilities are 0.5, 0.3 and
0.1, respectively. Hence, the probability for none of them
appearing is 1 - 0.5 - 0.3 - 0.1 = 0.1.

Given a p-document treeT , we can generate all possible
worlds or deterministic documents as follows. Basically we
traverseT in a top-down fashion. When we visit a distribu-
tional node, two situations need to be dealt with differently.
(1) If it is an IND node withm child nodes, we generate2m

copies ofT , delete theIND node, replace them child nodes
with one distinct subset of them for a copy, and connect each
child node in the subset to the ordinary parent node of theIND
node. For each copy, the probability for this copy occurringis
the product of all existence probabilities of the child nodes in
the subset and the absence probabilities (i.e., one minus the
existence probability) of the child nodes not in the subset.(2)
If it is a MUX node withm child nodes, we generatem + 1
copies ofT , delete theMUX node, replace them child nodes
with one distinct child node or no child for a copy, and for
the former, connect the child node to the ordinary parent node
of theMUX node. For each copy, the probability for this copy
occurring is the existence probability of the distinct child node
in the subset or the absence probability for none of the child
nodes appearing. For each generated copy ofT , we continue
the top-down traversal until all distributional nodes are deleted.
At the end, each distinct copy becomes a possible world of
T . In the case that two generated copies are the same, they
are merged with the probability as the sum of the individual
probabilities.

Example 2: For the p-document subtree rooted atC1 in
Figure 1(a), all its possible worlds can be found in Figure 2
by running the above procedure. WhenMUX2 is visited, four
documents are generated and the one withIND3 in turn gen-
erates 4 more documents, resulting in 7 documents generated
in total. Among them, there are two copies containing a single
nodeC1: one whenMUX2 is visited with the probability 1-
0.5-0.1-0.3 = 0.1, and the other whenIND3 is visited with the
probability 0.1*(1-0.7)*(1-0.9) = 0.003. So the sum of themis

0.103. The probabilities of the other possible worlds are easy
to calculate following the above procedure.

C1

D1

C1

D2 E1

C1

E2

C1

D2

C1

E1

C1

0.5 0.063 0.30.007 0.027 0.103

k1 k1 k1k2 k2k2

Fig. 2. Example of deterministic trees rooted atC1

Top-k Keyword Query A top-k keyword query consists of
a set of keywords{k1, k2, . . ., kn} and a positive integerk. We
define the answers for a top-k keyword query on a p-document
T ask ordinary nodes onT with the highest probabilities to be
SLCAs in the possible worlds generated byT . The probability
of a nodev being an SLCA in the possible worlds is denoted
asPrG

slca(v). The formal definition ofPrG
slca(v) is as follows:

PrG
slca(v) =

m∑

i=1

{Pr(wi)|slca(v, wi) = true} (1)

wherew1, . . . , wm denotes the possible worlds implied byT .
slca(v, wi) = true indicates thatv is an SLCA in the possible
world wi. Pr(wi) is the existence probability of the possible
world wi.

To develop the above discussion,PrG
slca(v) can also be

computed with Equation 2. Here,Pr(pathr→v) indicates the
existence probability ofv in the possible worlds. It can be
computed by multiplying the conditional probabilities inT ,
along the path from the rootr to v. PrL

slca(v) is the local
probability for v being an SLCA inTsub(v), whereTsub(v)
denotes a subtree ofT rooted atv.

PrG
slca(v) = Pr(pathr→v) × PrL

slca(v) (2)

To computePrL
slca(v), we have the following equation similar

to Equation 1.

PrL
slca(v) =

m′
∑

i=1

{Pr(ti)|slca(v, ti) = true} (3)

wherem′ deterministic trees{t1, t2, ..., tm′} are local possible
worlds generated fromTsub(v), Pr(ti) (1 ≤ i ≤ m′) is the
probability of generatingti from Tsub(v); slca(v, ti) = true

meansv is an SLCA node inti, namely the root nodev is the
only LCA node inti.

Example 3: We give an example to computePrG
slca(C1). It

is not difficult to see thatPr(pathA→C1
) = 1 ∗ 0.25 ∗ 0.6 =

0.15. To computePrL
slca(v), after examining the seven local

possible worlds forTsub(C1) in Figure 2, C1 is an SLCA
for only one local possible world with probability 0.63, so
we have PrL

slca(v) = 0.63. As a result, PrG
slca(C1) =

Pr(pathA→C1
) × PrL

slca(C1) = 0.15 ∗ 0.63 = 0.0945.
Although Equation 2 and 3 have simplified the computa-

tion, a straightforward implementation cannot avoid generating
possible worlds. Since it is already tedious for enumerating

possible worlds for a small probabilistic subtreeTsub(C1),
one can imagine the workload for larger subtrees. However,
observing that for an ancestor-descendant node pair(va, vd),
local possible worlds ofTsub(vd) always constitute local
possible worlds ofTsub(va), it may be appropriate to compute
PrG

slca(vd) first, and reuse part of the computation done for
vd when we computePrG

slca(va). This point motivates our
SLCA-probability computation method and algorithms. They
are conceptually in a bottom-up manner.

III. OVERVIEW OF THIS WORK

In this section, we briefly introduce an encoding scheme for
a probabilistic XML data tree and then go through the method
of computing probability of SLCA results without generating
possible world.

A. Encoding Probabilistic XML Data

Dewey encoding scheme has been verified and applied as
an effective and efficient way in previous keyword search
approaches [12], [14]. Given two keyword nodes, it is easy to
get the common ancestor by comparing their Dewey codes.
In this work, we extend the Dewey encoding scheme for
adapting to probabilistic XML documents. To do this, we
encode each node into a number that represents its Dewey
number while a char “M” or “I” is attached before the number
for MUX or IND nodes. Figure 1(b) demonstrates the results
of encoding the nodes in Figure 1(a). In addition, each leaf
node maintains a list of conditional probabilities from theroot
to the leaf node. The recorded conditional probabilities can be
used to calculate the probability of SLCA results. The detailed
encoding algorithm is omitted due to the limited space.

B. Directly Computing Probability of SLCA Result

In this section, we illustrate the procedure of directly
computing probability of SLCA result from a given set of
keyword nodes, rather than from the possible worlds.

Consider a keyword query Q ={k1, ..., kn} and any parent
node p with its child nodesc1, ..., cm. For eachci, λi

represents the conditional probability ofci when p appears,
while tabi is a table with the maximal size2|Q| maintaining
the keyword distributions{µ(2|Q|−1), ..., µ0} in nodeci. Our
task is to calculate the distribution tabletabp of nodep based
on tabi andλi where1 ≤ i ≤ m. To make the calculation easy,
we utilize binary number to represent keyword distributions
in each table. For example, given a keyword query{k1,k2},
distribution ‘11’ - ‘µ3’ means the probability thatp is an
SLCA that contains bothk1 and k2; ‘10’ - ‘ µ2’ means the
probability thatp containsk1, but notk2; ‘01’ - ‘ µ1’ means
the probability thatp containsk2, but notk1, and ‘00’ - ‘µ0’
means the probability thatp contains neitherk1 nor k2.

Due to the features of probabilistic documents, the parent
nodep may be an ordinary node, an IND node, or a MUX
node. For different node types, we have to adopt different
methods to compute the distributions of keywords inp using
its child nodes’ distributions.

1) Node p is an IND node: For each child nodeci, we first
promote its distributiontabi={(2|Q|−1) → µ(2|Q|−1), ...,0 →
µ0} by multiplying with its local conditional probabilityλi. As
such, the updated distribution is refreshed astab

(↑)
i ={(2|Q| −

1) → λi ∗ µ(2|Q|−1), ..., 0 → (λi ∗ µ0 + 1− λi)}. The general
equation is displayed as follows.

tab
(↑)
i =

{

{x → λi ∗ µx|∀x ∈ tabi, x 6= 0}

{x → (λi ∗ µx + 1 − λi)|x = 0}
(4)

And then we mergetab
(↑)
i with the distributiontabp={(2|Q|−

1)p → µ
p

(2|Q|−1)
, ..., 0p → µ

p
0} of p using a set ofbitwise OR

operations bounded by the maximal size(2|Q|−1)2. Generally,
keyword query size is around 3 or 4. In addition, we only cache
the none-zero values in the distributional table. As such, lots
of operations can be avoided. To guarantee the completeness
of the results, we execute the bitwise operations fortab

(↑)
i

andtabp. The corresponding values will be multiplied and as-
signed to the corresponding keyword distributions. At last, the
computed results will be aggregated together as the updated
tabp′ .

tabp′ = {z →
∑

µx∗µy|z = x OR y,∀x ∈ tab
(↑)
i ,∀y ∈ tabp}

(5)
If tabp does not exist at the beginning, i.e., all the values

are zero, we directly assigntab
(↑)
i to tabp without any compu-

tation. The final distribution of the IND node can be obtained
by processing all its relevant child nodes in the similar way.

Example 4: Let’s consider the IND node 1.M1.I2.1.M1.I2
and its two children D2 and E1 w.r.t. a keyword
query {k1, k2}. The distribution of keywords inD2 is:

D2.tab

11 10 01 00
0 1 0 0

As we know the local conditional probability

of D2 is 0.7, the promoted distribution ofD2 can be updated

as:
D2.tab(↑)

11 10 01 00
0 0.7 0 0.3

, which becomes the start distribution

tabp of the IND node. Here,D2.tab(↑) : 00 is set as 0.3,
not 0 according to Equation 4, which also conforms to the
IND semantics. Similarly, we can get the promoted distribution

of E1 as:
E1.tab(↑)

11 10 01 00
0 0 0.9 0.1

. Because the distributiontabp

contains non-zero values now, we should mergeE1.tab(↑) into
tabp by a set of bitwise operations:

01 OR 10p = 11p′

→ (E1.tab(↑) : 01) ∗ (tabp : 10) = 0.9 ∗ 0.7 = 0.63;
01 OR 00p = 01p′

→ (E1.tab(↑) : 01) ∗ (tabp : 00) = 0.9 ∗ 0.3 = 0.27;
00 OR 10p = 10p′

→ (E1.tab(↑) : 00) ∗ (tabp : 10) = 0.1 ∗ 0.7 = 0.07;
00 OR 00p = 00p′

→ (E1.tab(↑) : 00) ∗ (tabp : 00) = 0.1 ∗ 0.3 = 0.03.

As such, thetabp will be updated as:
tabp′

11 10 01 00
0.63 0.07 0.27 0.03

.

The computing procedure still conforms to the possible world
semantics because the union of the current distributions in
tabp′ is still equal to one.

2) Node p is a MUX node: For each child nodeci

(1 ≤ i ≤ m), we first promote its distributiontabi={(2|Q| −
1) → µ(2|Q|−1), ..., 0 → µ0} by multiplying with its local

conditional probabilityλi. As such, the updated distribution
is refreshed astab

(↑)
i ={(2|Q| − 1) → λi ∗ µ(2|Q|−1), ...,

0 → λi ∗ µ0}. The general equation is provided as follows.

tab
(↑)
i = {x → λi ∗ µx|∀x ∈ tabi} (6)

Next, we can directly add the keyword distribution values
in tab

(↑)
i into the corresponding parts intabp based on the

understanding of MUX semantics, i.e., child nodes of a MUX
node cannot co-occur at the same time. Therefore,tabp′ can
be obtained by aggregating from the corresponding parts of
tabp, and tab

(↑)
i (1 ≤ i ≤ m) with the following equation.

As an acute reader, you may find that the computation of
tabp′ : 0 → µ0 is a special case. It is equal to the aggregation
of all child nodes’ tab(↑) : 0 → µ0 and an extra part
1 −

∑n
i=1 λi. The value can be obtained with the promotion

of each related child node, which does not require extra cost.

tabp′ = {z → µz + µx|z = x,∀x ∈ tab
(↑)
i ,∀z ∈ tabp}; (7)

After all tab
(↑)
i are processed,

tabp′ : 0 ⇐ tabp′ : 0 + (1 −
n∑

i=1

λi). (8)

Example 5: Let’s consider a MUX node (1.M1.I2.1.M1)
and its child nodesD1, an IND node andE2 w.r.t.
a keyword query {k1, k2}. At the beginning, we
assume that their distributions are listed as follows:

D1.tab

11 10 01 00
0 1 0 0

IND.tab

11 10 01 00
0.63 0.07 0.27 0.03

E2.tab

11 10 01 00
0 0 1 0

. Then

we promote them to their parent node by considering
their local conditional probabilities: 0.5, 0.1 and 0.3,
respectively. Their distributions are updated as follows:

D1.tab(↑)

11 10 01 00
0 0.5 0 0

IND.tab(↑)

11 10 01 00
0.063 0.007 0.027 0.003

E2.tab(↑)

11 10 01 00
0 0 0.3 0

.

Based on the updated distributions of child nodes, the dis-
tribution of their parent node can be calculated as follows.

11p′

→ (D1.tab(↑) : 11 + IND.tab(↑) : 11 + E2.tab(↑) : 11) = 0.063;
10p′

→ (D1.tab(↑) : 10 + IND.tab(↑) : 10 + E2.tab(↑) : 10) = 0.507;
01p′

→ (D1.tab(↑) : 01 + IND.tab(↑) : 01 + E2.tab(↑) : 01) = 0.327;
00p′

→ (IND.tab(↑) : 00 + 1 − 0.5 − 0.1 − 0.3 = 0.103).
As such, the tabp will be updated as:

MUX2.tabp′

11 10 01 00
0.063 0.507 0.327 0.103

. The computing procedure also

holds the possible world semantics because the union of the
current distributions intabp′ is still equal to one.

3) Node p is an ordinary node: The procedure is similar
to the IND case. The computational equation is the same as
Equation 5. However, the difference is that we may generate
an SLCA candidate with its probability when the value of
tabp′ : (2|Q| − 1) is not equal to zero. As such, we remove
(2|Q| − 1) from tabp′ because the probability of an SLCA
node can not contribute to its ancestors again due to the SLCA
semantics.

Example 6: Consider C1 and its child MUX2, we can
directly take the keyword distribution MUX2.tabp′

of MUX2
as that ofC1 because MUX2 is the only child ofC1 and

the edge between them is an ordinary edge. SinceC1 is
an ordinary node, we begin to check if it is an SLCA
candidate. Because ofC1.tab : 11 → 0.063, we calcu-
late the probability ofC1 becoming an SLCA result as
Pr(pathC1

)*C1.tab : 11 = (1*0.25*0.6)*0.063=0.00945. After
that,C1.tab will be updated by assigning zero toC1.tab : 11,

i.e.,
C1.tab

11 10 01 00
0.063 0.507 0.327 0.103

⇒
C1.tab′

11 10 01 00
0 0.507 0.327 0.103

.

ConsiderC3 and its child nodesC4, B3 andC5. We first get

the keyword distributions fromC4 and B3:
C4.tab

11 10 01 00
0 0 1 0

B3.tab

11 10 01 00
0 1 0 0

. After their distributions are promoted and

merged, we get the distributions of their parent nodeC3:
C3.tab

11 10 01 00
1 0 0 0

. Although C3.tab : 11 has already been in-

creased to 1, but we have to consider the remaining child node
C5 which may produce SLCA results and reduce the value of
C3.tab : 11. In this example, the probability forC5 becoming
a new SLCA result is 0.5, which comes fromB5 and C5,

where
C5.tab

11 10 01 00
0.5 0.5 0 0

. SinceC5 is also an ordinary node and

contains the full keyword distribution, its global probability
can be computed as Pr(pathC5

)*(C5.tab : 11) = 1*0.3*1*0.5
= 0.15. After that, we promoteC5.tab : 10 → 0.5 to C3.tab.
As such, the probability forC3 becoming an SLCA candidate
can be computed as Pr(pathC3

)*(C3.tab : 11*C5.tab : 10) =
1*0.3*1*0.5=0.15. After outputting the SLCA candidate, we
exclude the value ofC3.tab : 11 by setting it as zero, i.e.,

C3.tab′

11 10 01 00
0 0 0 0

.

To make the above examples clear, we allow the distribution
tables contain zero values. In fact, we only need to maintain
the none-zero values in our implementation. We can get the
probability of each SLCA result as Example 3 by repeatedly
calling the above three types of operations.

IV. TOP-k KEYWORD SEARCH

ALGORITHMS

Given a top-k keyword query {k1, k2, ..., kn} and a
probabilistic XML data tree, our target is to quickly find the
k best SLCA results with the highest probabilities. To do this,
two algorithm are introduced, PrStack algorithm is realized by
scanning the keyword nodes once in a document order while
EagerTopK algorithm is designed based on a series of upper
bound properties.

A. PrStack Algorithm

In this section, we introduce a stack-based algorithm,
PrStack, to discover the SLCA nodes with thek higest
probabilities in a probabilistic XML tree.

1) The idea of PrStack Algorithm: PrStack scans all the
keyword inverted lists once. It progressively reads keyword
match nodes one by one according to their document order
from the inverted lists, and compute the probabilities for the
SLCA nodes that are ancestors of the keyword match nodes.

The principle is that, when computing the probability of an
SLCA nodev, it has retrieved all the keyword matches that
are descendants ofv from all the keyword lists. In other
words, the SLCA probability of a nodev is determined after
the probabilities of all child SLCA nodes ofv have been
determined. The newly computed probability, together withthe
corresponding SLCA node, will be inserted into ak-size heap
if the new probability is larger than the currentkth highest
probability.

Figure 1(a) shows the order of SLCA probability computa-
tion for some of the nodes. The order is indicated by′′O∗′′.
It is not difficult to see that the probability-computation order
equals to the order for visiting nodes in a postorder traversal
of the tree. This probability-computation order can be realized
by maintaining a stack. The probability of each SLCA node
can be computed according to the formula in Section III.

TABLE I
HASH MAP ϕ : v → dist

node dist node dist

1.M1.I1.1 {01 → 1} 1.M1.I2.1.M1.1 {01 → 1}
1.M1.I2.1.M1.I2.1 {01 → 1} 1.M1.I2.1.M1.I2.2 {10 → 1}
1.M1.I2.1.M1.3 {10 → 1} 1.M1.I2.2 {01 → 1}
1.M1.4.1 {10 → 1} 1.M1.4.2 {01 → 1}
1.M1.4.3.M1.1 {01 → 1} 1.M1.4.3.M1.2 {10 → 1}
1.M1.4.3.2 {01 → 1}

2) Index Structure: Before explaining the algorithm, we
first introduce two indexes that will be used in the following
sections. The first index is used to maintain the relationship
between a nodev and its local probabilistic keyword distri-
butions dist w.r.t. a given keyword queryQ. It is denoted
as ϕ : v → dist. ϕ is initiated and updated during the time
that we load keyword nodes from database. The maximal size
of ϕ is equal to the total number of keyword nodes. During
query evaluation, once a node is probed, its distributions can
be removed fromϕ and promoted to its parent based on the
formula in Section III. Table I displays the status after we
load all the keyword nodes w.r.t.Q = {k1, k2}. And we
use dist to record the mapping from keyword distributions
to their probabilities. The maximal size ofdist is equal to
2|Q|. For instance,10 → 1 represents the local probability
of a node only containingk2 is 1 w.r.t. the queryQ. The
second index keeps the mapping between a node and its all
conditional probabilities. It is denoted asγ : v → PrLink.
For example, the conditional probabilities ofD1 is a link,

1 0.25 0.6 1 0.5 .
3) Description of PrStack Algorithm: The detailed proce-

dure of PrStack algorithm is shown in Algorithm 1. We first
load the relevant keyword node listsL and their conditional
probabilities γ. At the same time, the map between nodes
and keyword distributions can be built based on the loaded
keyword nodes. Then we get the first nodev that has the
smallest Dewey code fromL and initiate astack based on
the Dewey components ofv. To simplify the explanations,v
is also used to represent its Dewey code.

After that, we process the rest of keyword nodes inL

one by one in a document order until the end ofL. Line 4-
Line 17 shows the detailed procedure. It firstly get the node

Algorithm 1 PrStack Algorithm
input: a keyword query{k1, ..., kn} and an encoded probabilistic
XML data treeT
output: top k ranked SLCA resultsR

1: load node listsL = {Li}, 1 ≤ i ≤ n, γ : v → PrLink, create
and updateϕ : v → dist;

2: get the smallest Deweyv from L;
3: initiate astack using the Deweyv;
4: while NextNode(L) 6= null do
5: v′ = GetNextNode(L);
6: if v′ is not promoted to its parentp(v) then
7: p = lcp(stack, v′); {find the longest common prefixp such

that stack[i] = v[i], 0 ≤ i ≤ p.length− 1}
8: while stack.size > p.length do
9: v = stack.pop();

10: get type(v) and local conditional probability lcprob(v);
11: if v is an ordinary nodethen
12: GenerateResults(v);
13: if p(v) /∈ ϕ then
14: DirectPromotion(v, type(v), lcprob(v), p(v));
15: else
16: CombineProb(v, type(v), lcprob(v), p(v));
17: stack.push(v′[j]) for p.length ≤ j < v′.length;
18: use similar procedure from Line 9 to Line 16 to process the rest

of nodes instack until it becomes empty;
19: return R;
Function GenerateResult

1: get distributiondist of v from ϕ; {v is a real SLCA if dist

contains

n
︷︸︸︷

1...1}
2: if v is a real SLCAthen
3: get the local probability PrL

v from dist;
4: get the multiplied conditional probabilities Pr(pathv) from

γ(v);
5: prGv = PrLv * Pr(pathv);
6: if The number of current results is less thank then
7: put v → prGv into R;
8: else if prGv is larger than k-th highest value in Rthen
9: remove the k-th candidate and putv → prGv into R;

10: remove PrLv from dist;
11: write v and the updateddist back toϕ;

v′ with the next smallest Dewey code by calling Function
GetNextNode(L) that records a cursor for accessing the next
node of L. Next, we need to compute the longest common
prefix p betweenv′ and v (in stack). If stack.size is larger
than the length ofp, which means that there is no ancestor-
descendant relationship betweenv′ and v, then we get the
Dewey code ofv by accessing the code components in
stack from bottom to top and pop outv from the stack. We
then identify if v can become an SLCA result, as shown in
Line 10-Line12. If v is an ordinary node, we call Function
GenerateResults() in Algorithm 1 to generate a new SLCA
result if it exists. If the type ofv is IND or MUX, we only
pop the stack and promote the distributions ofv to its parent
p(v).

To correctly make the promotion, there are two different
cases in Line 13-Line 16: (1)p(v) does not exist inϕ, we
can directly promote thedist of v to p(v) by calling Function
DirectPromotion(v, type(v), lcprob(v), p(v)). To make direct

promotion, we only need to multiply the values indist

(ϕ(v)) of v by its local conditional probabilitylcprob(v) as
Equation 4 and Equation 6. The specific consideration is given
to the “0” distribution by adding the extra part(1− lcprob(v))
as Equation 4 for IND or Ordinary nodes and Equation 8
for MUX nodes. (2)p(v) exists inϕ, we have to merge the
dist coming fromv with the existingdist′ of p(v) together
by using Function CombineProb(v, type(v), lcprob(v), p(v)),
which implements the procedure of using Equation 5 and
Equation 7. The specific consideration of this procedure is
also focused on the computation of “0” distribution whenv

is a MUX node. We need to subtractlcprob(v) from the “0”
distribution value.

After we process all the popped nodes fromstack until
stack.size is equal to the length ofp, we push the unmatched
components ofv′ into stack. The above procedure will be
repeatedly processed until no keyword nodes are left. At last,
we pop out the rest of nodes instack and process them using
the similar procedure untilstack becomes empty, as shown in
Line 9 to Line 16 in Algorithm 1.

B. EagerTopK Algorithm

In this section, we propose an eager algorithm, EagerTopK,
for catering for top-k keyword search. It starts from the set
of initial SLCAs and then select the promising candidates
to evaluate. EagerTopK can quickly find top-k answers by
pruning the unsatisfied candidates.

1) Pruning Properties: Before introducing the algorithm,
we introduce some upper bound properties that can be used
to prune unpromising nodes without physically computing the
SLCA probability of those nodes. Assume we want to compute
the probability for an SLCA nodev, let the set of node on the
path from the rootr to nodev (including v itself) be Vr→v

and letvc1
, . . . , vcm

be the children ofv on the p-document
T , let PrG

all(vci
) denote the probability that nodevci

covers
all the keywords in the subtree rooted atv in terms of the
possible world semantics. We have the following properties:

Property 1: If nodev is an IND or ordinary node, we have
the following equation:

∑

vi∈Vr→v

PrG
slca(vi) ≤

m∏

i=1

(1 − PrG
all(vci

))

Explanation: The reason is that an SLCA exists on the path
r → v implies there is no SLCA in any of the subtree rooted
at vci

(i ∈ [1,m]). Consequently,
∏m

i=1 (1 − PrG
all(vci

)) not
only gives an upper bound forPrG

slca(v), it is also an upper
bound ofPrG

slca(v′) for any nodev′ on the pathr → v. If
∏m

i=1 (1 − PrG
all(vci

)) is smaller than the currentkth highest
SLCA probability, we can safely prune all the nodes on the
pathr → v.

Property 2: If nodev is a MUX node, we have the follow-
ing equation:

∑

vi∈Vr→v

PrG
slca(vi) ≤ 1 −

m∑

i=1

PrG
all(vci

)

Explanation: in fact, PrG
slca(v) should be 0, because a

MUX cannot be an answer. But we still calculate1 −
∑m

i=1(PrG
all(vci

)), because it gives an upper bound for all
v’s ancestors to be an SLCA like Property 1.

Here,PrG
all() can also be calculated in a bottom up manner.

For an IND or ordinary node,

PrG
all(v) = 1 −

m∏

i=1

(1 − PrG
all(vci

)) + PrG
slca(v) (9)

For a MUX node,

PrG
all(v) =

m∑

i=1

PrG
all(vci

) (10)

In the above analysis, given a nodev, we assume that all
v’s children have been discovered when we compute the upper
bound for v. However, the prerequisite can be relaxed. For
example, letvd1

, . . . , vdm
be a set of descendants ofv which

do not have ancestor-descendant relationship, suppose we have
known PrG

all(vdi
) for eachdi. We have Property 3.

Property 3: No matter nodev is an IND or ordinary or
MUX node, we have the following equation:

∑

vi∈Vr→v

PrG
slca(vi) ≤

m∏

i=1

(1 − PrG
all(vdi

))

Explanation: For an IND or ordinary nodev, according to
Equation 9, we have1− PrG

all(v) =
∏m

i=1(1− PrG
all(vci

))−
PrG

slca(v) ≤
∏m

i=1(1 − PrG
all(vci

)). Similarly, for a MUX
node, according to Equation 10, we have1− PrG

all(v) = 1−
∑m

i=1 PrG
all(vci

) ≤
∏m

i=1(1−PrG
all(vci

)). For both cases, we
have:

1 − PrG
all(v) ≤

m∏

i=1

(1 − PrG
all(vci

)) (11)

As a result, we have the Equation 12. The last step is due to
a recursive induction using Equation 11:

∑

vi∈Vr→v
PrG

slca(vi) ≤ 1 −
∑m

i=1 PrG
all(vci

)
≤

∏m
i=1 (1 − PrG

all(vci
))

≤
∏m

i=1 (1 − PrG
all(vdi

))
(12)

Property 3 can be used to improve the upper bound progres-
sively. To give an example, at the beginning, the upper bound
for a nodev is 1. After obtainingPrG

all(vd1
) where vd1

is
an descendant ofv, we can update the upper bound forv by
1−PrG

all(vd1
). To follow the process, when we have obtained

PrG
all(vd2

), wherevd2
is a sibling ofvd1

(vd2
is also a descen-

dant ofv and shares the same parent withv1), we can update
the upper bound forv as(1−PrG

all(vd1
)) ∗ (1−PrG

all(vd2
)).

One tricky step is, when we have obtainedPrG
all(vp), herevp

is the parent ofvd1
and vd2

, the upper bound ofv, which is
currently(1−PrG

all(vd1
))∗ (1−PrG

all(vd2
)), can be improved

as1 − PrG
all(vp) by multiplying 1−PrG

all(vp)

(1−PrG
all

(vd1
))∗(1−PrG

all
(vd2

))
,

since1 − PrG
all(vp) = (1 − PrG

all(vd1
)) ∗ (1 − PrG

all(vd2
)) −

PrG
slca(vp) ≤ (1 − PrG

all(vd1
)) ∗ (1 − PrG

all(vd2
)). The tricky

step implies that whenever we go upward and gain some new
information, such asPrG

slca(vp), the upper bound of higher

nodes may be reduced further. Consequently, the upper bound
is decreasing as we continuously probe the SLCA candidates
in a bottom-up manner.

Property 4: If node v is an IND or ordinary node, then its
SLCA probability satisfies:

PrG
slca(v) ≤ Pr(pathr→v) ∗

m∏

i=1

(1 −
PrG

all(vci
)

Pr(pathr→v)
)

Explanation: here,Pr(pathr→v) is the probability forv to
occur in the possible worlds. In the local possible worlds

generated byTsub(v), 1 −
PrG

all(vci
)

Pr(pathr→v) gives the prob-
ability that ci does not contain all the keywords given
the existence ofv. Following an independent distribution,
∏m

i=1 (1 −
PrG

all(vci
)

Pr(pathr→v)) gives an upper bound for the lo-
cal SLCA probabilityPrL

slca(v). And thus,Pr(pathr→v) ∗
∏m

i=1 (1 −
PrG

all(vci
)

Pr(pathr→v)) is an upper bound for the global
probability PrG

slca(v). Compared with Property 1, Property 4
gives an upper bound for a single node. Similarly, we have
Property 5.

Property 5: If node v is a MUX node, then its SLCA
probability satisfies:

PrG
slca(v) ≤ Pr(pathr→v) ∗ (1 −

m∑

i=1

PrG
all(vci

)

Pr(pathr→v)
)

To sum up, based on Property 1 and Property 2, we
can prune the nodes that are the ancestors of a nodev

if
∏m

i=1 (1 − PrG
all(vci

)) (v is IND or ordinary) or 1 −
∑m

i=1 PrG
all(vci

) (v is MUX) is smaller than the currentkth
highest SLCA probability. The most often used property is
Property 3. The bound is looser than those of Property 1
and 2, but still has good pruning power, because we can
decrease the upper bound for a node using its descendant nodes
without necessarily knowing all its children.v’s upper bound
can be decreased earlier. Moreover, based on Property 4 and
Property 5, we can postpone the calculation of a nodev until
one of its ancestors cannot be pruned by the upper bounds.

2) The idea of EagerTopK Algorithm: We first scan the
keyword node lists to compute and get SLCA candidate setS

using any traditional SLCA algorithm, in which distributional
nodes are treated as ordinary nodes. As a result,S may contain
false positive SLCA candidates. And then, we compute the
probability PrG(v) for each SLCA candidatev in S. To
calculatePrG(v), we need to access and remove the relevant
keyword nodes, which are the descendant nodes ofv, from
the keyword node lists. In this procedure,v may be taken as
a result to be put into the result heapR if v contains all the
required keywords and its SLCA probabilityPrG(v) is larger
than thek-th largest probability inR andv is an ordinary node.
And then the keyword distributions (except the full keyword
distribution) of v will be promoted to its parentp(v). If v is
not an ordinary node, we directly promote all the keyword
distributions ofv and the path upper bound to its parentp(v),
by which the false positive SLCA candidates can be skipped.

To compute the upper boundδ of p(v), we need add the
constraint ofv to p(v) by multiplying (1- PrG(v)) according

to Property 3 where the nodes with different types can be dealt
with in a similar way. If δ is equal to or less than thek-th
largest value,p(v) will be recorded into a set DeleteSet, i.e.,
both p(v) and its ancestor nodes cannot become new SLCA
results w.r.t. the top-k keyword query. Ifδ is larger than the
k-th highest value,p(v) and its upper boundδ will be cached
into a candidate setUBMap.

We repeat the above procedure for each SLCA candidate
in S and promote its keyword distributions and upper bound
to its parentp(v). If p(v) or its descendants have existed in
DeleteSet, thenp(v) can be discarded directly without further
verification. After all the SLCA candidates inS are processed
in the similar way, we can have a set of potential candidates
in UBMap, from which we can select the candidate with the
highest upper bound as a promising candidate to be processed
continuously.

Given a promising candidatev ∈ UBMap, we first check
whetherv could be an SLCA answer by using node upper
bound properties, Property 4 and Property 5. If so, we begin
to calculate its keyword distributions. Based on the keyword
distributions and the calculated path upper bound value ofv,
we need to update the candidates that are the ancestor ofv

in UBMap. And then p(v) and its upper bound is put into
UBMap. If the node upper bound ofv is equal to or lower than
the kth highest probability inR, v will be suspended. After
that, we promote the upper bound ofv to its parentp(v) and
collect the extra aggregated upper bounds of descendants of
p(v) from UBMap which may reduce the upper bound ofp(v).
v will be released until its parent node needs to be computed
or pruned.

1v

2v

3v

4v

5v 6v

7v

G
1Pr G

3Pr

G
6Pr

Fig. 3. Example of updating the path upper bounds

Example 7: In Figure 3, assume we have found the SLCA
candidatesS = {v1, v3, v6} based on traditional keyword
search methods. We first calculate the SLCA probabilityPrG

1

of v1 and then calculate the upper bound of its parentv2, i.e.,
δ2 = 1 - PrG

1 . Similarly, we can processv3 and calculate the
upper bound of its parentv4, i.e., δ4 = 1 - PrG

3 . After v6

is processed, the upper bound ofv7 is 1 - PrG
6 . But as we

know v7 is the ancestor ofv2 and v4, we need to aggregate
the upper bounds ofv2 andv4 to v7. As such,δ7 is decreased
to (1 - PrG

6)*(1 - PrG
1)*(1 - PrG

3). At this moment,S has
become empty while UBMap contains three new candidates
v2, v4, andv7.

Assume we haveδ4 > δ2. v4 will be chosen as the
promising candidate because its upper bound must be larger
than that of its ancestorv7. After we processv4, we can get its
SLCA probabilityPrG

4 . Next, we need to compute the upper
bound ofv5 that is the parent ofv4.

Sincev7 is the ancestor ofv5, we should update the upper
bound ofv7 by using the upper bound ofv4 and its SLCA
probability PrG

4 . As such,δ7 = δ7 *(δ4−PrG
4

δ4

). And we know
v2 is a descendant ofv5. Hence, we need to aggregateδ2 to
v5, i.e., we haveδ5 = (δ4 − PrG

4)*δ2.
At the next step,v2 is selected as the promising candidate.

After it is processed, we also need to update the bounds ofv5

andv7, i.e.,δ5 = δ5 * (δ2−PrG
2

δ2

) = (δ4−PrG
4)*(δ2−PrG

2) = (1
- PrG

3 - PrG
4)*(1 - PrG

1 - PrG
2). Similarly, we can compute

the bound ofv7.

Algorithm 2 EagerTopk Algorithm
input: a keyword query{k1, ..., kn} and an encoded probabilistic
XML data treeT
output: top k ranked SLCA resultsR

1: load keyword node listsL = {Li}, 1 ≤ i ≤ n;
2: S = get slca(L);
3: UBMap: v → δ, DeleteSet, PrGSet:vslca → PrG(vslca);
4: for each candidatev ∈ S do
5: PrG(v) = ComputeSLCAProbability(v) that is similar to

Line 2-Line 18 in Algorithm 1;
6: if p(v) cannot be deleted using DeleteSetthen
7: set bothδv andδ∇ as 1 for each SLCA candidate;
8: if p(v) ∈ UBMap then
9: UBMap(p(v)) = UBMap(p(v)) * (δv- PrG(v));

10: for v′ ∈ UBMap do
11: if p(v)//v′ then
12: δ∇ = δ∇ * UBMap(v′);
13: else if v′//p(v) then
14: UBMap(v′) = UBMap(v′)∗(δv−PrG(v))

δv
;

15: δp(v) = δ∇ * (δv-PrG(v));
16: if δp(v) is larger than k-th largest value inR then
17: UBMap.put(p(v), δp(v));
18: else
19: put nodep(v) into DeleteSet;
20: repeat
21: v, δv ← UBMap.removePromising();
22: if VerifyPromisingNode(v)=true then
23: PrG(v) = ComputeSLCAProbability(v);
24: else
25: suspendv;
26: using Line 6 - Line 19, butδv is the current value;
27: until UBMap is empty
28: return R;

3) Descriptions of EagerTopK Algorithm: The pseudo-
code for the eager-preferred PrKS algorithm is shown in
Algorithm 2. A traditional keyword search algorithm can be
employed to compute the initial SLCA candidate setS. Here
we adopt the method (get slca()) in [12].

And then, we scan the keyword node lists in a document
order to calculate the keyword distributions for each SLCA
candidate inS by calling Function ComputeSLCAProbabil-
ity(v). Similar to Line 2-Line 18 in Algorithm 1, Com-
puteSLCAProbability() can compute the keyword distributions
according to the cached keyword distribution tables that is
maintained by a hash map. After we process one node, we
need to promote its keyword distributions to its parent based on
the different strategies, i.e., IND, MUX, or Ordinary. Detailed
procedure can be seen from Section IV-A. A little difference

lies in Line 18 in Algorithm 1, at which ComputeSLCAProb-
ability() will be terminated after nodev in stack is processed,
rather than running to the empty of the stack as Algorithm 1.

Line 6 - Line 19 provide the procedure of updating the path
upper boundsδ in UBMap when we promote the keyword
distributions of a nodev to its parentp(v). Before we make
the promotion, we first check if the nodep(v) exists or is
implied by a node in the delete set DeleteSet. Ifp(v) appears
(or is implied by a node) in DeleteSet, we directly process
the next SLCA candidate inS. Otherwise, we are required
to update UBMap based on the current resultPrG(v) to be
returned by Function ComputeSLCAProbability(v). To do the
update, we first check if the candidatep(v) has been inserted
into UBMap. If it exists, we can replace the old upper bound
value UBMap(p(v)) of p(v) with UBMap(p(v)) - PrG(v).
Otherwise, we begin to consider whether it is qualified forp(v)
to be inserted into UBMap. As such, we need to collect the
aggregated upper boundδ∇ from the descendants ofp(v) in
UBMap as Line 12 while update the upper bounds of ancestors
of p(v) in UBMap as Line 14. After that, we can calculate the
path upper bound ofp(v) by usingδ∇ * (δv −PrG(v)) where
δv is equal to 1. This is because we give the maximal upper
bound 1 as a default value to each SLCA candidate at the
beginning. In the following procedure, the value ofδv will
be updated dynamically based on the current computations.
When the upper boundδp(v) is worked out, we compare it
with the k-th largest probability in the result heapR. If δp(v)

is larger, p(v) and δp(v) will be written into UBMap as a
potential candidate for future processing.

Next, in Line 20-Line 27, we repeatedly remove the most
promising candidatevm from UBMap at each time until
UBMap becomes empty. The most promising candidatevm

means that it has the highest path upper bound in UBMap,
i.e., δm ≥ ∀δi ∈ UBMap. Given a promising candidatev, we
first check if it is possible to generate a new SLCA result by
utilizing Function VerifyPromisingNode(v). In the function,
we need to calculate the node upper bound ofv according to
Property 4 and Property 5, and then compare it with thek-th
highest probability inR. If VerifyPromisingNode(v) returns
true, it says that the node upper bound ofv is larger, i.e.,v
may generate a satisfied SLCA result. In this case, we can
access the keyword nodes that are the descendants ofv in
the updated keyword node lists and calculate the keyword
distributions of v. At the same time, the probed keyword
nodes will be removed and the keyword node lists will be
updated. The procedure can be executed by calling Function
ComputeSLCAProbability(v). At the next step, we promote
the keyword distributions ofv to its parentp(v) and compute
the path upper bound ofp(v), as in Line 6 - Line 19.

When v cannot pass the node verification successfully, it
says thatv cannot produce a new result anymore. As such, we
can skipv and directly probe its parentp(v). We use Line 6
- Line 19 to compute the upper bound ofp(v) and update
UBMap.

TABLE II
PROPERTIES OF P-DOCUMENT

ID name size #IND #MUX #Ordinary

Doc1 XMark 10M 16,040 16,785 169,506
Doc2 20M 46,943 46,921 340,937
Doc3 40M 69,267 70,585 676,537
Doc4 80M 179,862 178,709 1,443,987
Doc5 Modial 1.2M 4,333 4,301 30,822
Doc6 DBLP 156M 859,608 875,586 3,333,331

TABLE III
KEYWORD QUERIES FOREACH DATASET

ID Keyword Query ID Keyword Query
X1 United States, Graduate X2 United States, Credit, ship
X3 Personal, Check, alexas X4 Alexas, ship
X5 internationally, ship

M1 muslim, multiparty M2 organization, United States
M3 united states, islands M4 organization, pacific
M5 chinese, polish

D1 Information, Retrieval, Database D2 XML, Keyword, Query
D3 Query, Relational, Database D4 probabilistic, Query
D5 stream, Query

V. EXPERIMENTAL STUDIES

We conduct extensive experiments to test the performance
of our algorithms that were implemented in Java and run on
a 3.0GHz Intel Pentium 4 machine with 2GB RAM running
Windows XP.

A. Dataset and Queries

We use two real datasets, DBLP1 and Mondial 2, and
a synthetic XML benchmark dataset XMark3 for testing
the proposed algorithms. For XMark, we also generate four
datasets with different sizes. The three types of datasets are
selected based on their features. DBLP is a relatively shallow
dataset of large size; Modial is a deep and complex, but
small dataset; XMark is a balanced dataset with varied depth,
complex structure and varied size. Therefore, they are chosen
as test datasets.

For each XML dataset used, we generate the corresponding
probabilistic XML tree, using the same method as used in
[9]. We visit the nodes in the original XML tree in pre-order
way. For each nodev visited, we randomly generate some
distributional nodes with “IND” or “MUX” types as children
of v. Then, for the original children ofv, we choose some of
them as the children of the new generated distributional nodes
and assign random probability distributions to these children
with the restriction that the sum of them for a MUX node
is no greater than 1. For each dataset, the percentage of the
distributional nodes is controlled in about 10% - 20% of the
total nodes. The generated datasets are as follows in Table II.
And we randomly select terms and construct five keyword
queries to be tested for each dataset, as shown in Table III.

B. Evaluation of Different Keyword Queries

Figure 4 shows the experimental results when we run the
queriesX1-X5 over Doc2,M1-M5 over Doc5, andD1-D5

1http://dblp.uni-trier.de/xml/
2http://www.dbis.informatik.uni-goettingen.de/Mondial/XML
3http://monetdb.cwi.nl/xml/

0

50

100

150

200

250

300

X1 X2 X3 X4 X5

Keyword Queries

R
es

p
o

n
se

 T
im

e
m

s PrStack

Eager Top-k

(a) Time vs. Query

0
2
4
6
8

10
12
14
16
18
20

X1 X2 X3 X4 X5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

PrStack

Eager Top-k

(b) Memory Usage vs. Query

0

5

10

15

20

25

30

M1 M2 M3 M4 M5

Keyword Queries

R
es

p
o

n
se

 T
im

e
m

s

PrStack

Eager Top-k

(c) Time vs. Query

0

0.5

1

1.5

2

2.5

M1 M2 M3 M4 M5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

 PrStack

Eager Top-k

(d) Memory Usage vs. Query

0

5

10

15

20

25

30

35

D1 D2 D3 D4 D5

Keyword Queries

R
es

p
o

n
se

 T
im

e
se

co
n

d
s

PrStack

Eager Top-k

(e) Time vs. Query

0

5

10

15

20

25

30

35

40

D1 D2 D3 D4 D5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

 PrStack Eager Top-k

(f) Memory Usage vs. Query

Fig. 4. Vary Query over Doc2, 5, 6 where k=10

over Doc6. And the required topk number is set as 10. From
the results, we can find that compared with PrStack algorithm,
EagerTopK algorithm can improve the time efficiency by at
least 50%. Sometimes, the second algorithm can be more than
5 times faster than the first one, e.g.,X2, X5 in Figure 4(a)
andM1, M2, M3 in Figure 4(c). This is because the total real
result numbers in Doc2 and Doc5 are not too large but the
numbers of some matched keyword nodes are large. In this
case, PrStack algorithm continues to probe the rest keyword
nodes while EagerTopK algorithm can be terminated early
based on the path upper bound. From Figure 4(e), we can
see that PrStack algorithm consumes about 16 - 31 seconds
for the given keyword queries while EagerTopK algorithm
spends about 7 - 13 seconds. Most of keywords occur in leaf
nodes and we know the depth of DBLP data tree is not large.
Even this case is suitable to fit PrStack algorithm, EagerTopK
algorithm can be executed faster than PrStack algorithm. This
is because some of initial SLCA candidates hold the highest
probabilities.

From Figure 4(b), Figure 4(d) and Figure 4(f), we can
see that EagerTopK consumes slightly more memory usage
than PrStack. This is because the keyword distributions of the
intermediate results have to be cached until they are promoted
to their parent nodes.

C. Evaluation of Different Top-k Values

0

50

100

150

200

250

300

0 10 20 30 40 50

Top k

R
es

p
o

n
se

 T
im

e
m

s

PrStack-X1 Eager Top-k-X1

PrStack-X2 Eager Top-k-X2

(a) Time vs. Top-k

0

5

10

15

0 10 20 30 40 50

Top k

M
em

o
ry

 U
sa

g
e

M
B

PrStack-X1 Eager Top-k-X1

PrStack-X2 Eager Top-k-X2

(b) Memory Usage vs. Top-k

0

5

10

15

20

0 10 20 30 40 50

Top k

R
es

p
o

n
se

 T
im

e
m

s

PrStack-M1 Eager Top-k-M1

PrStack-M2 Eager Top-k-M2

(c) Time vs. Top-k

0

0.5

1

1.5

2

0 10 20 30 40 50

Top k

M
em

o
ry

 U
sa

g
e

M
B

PrStack-M1 Eager Top-k-M1

PrStack-M2 Eager Top-k-M2

(d) Memory Usage vs. Top-k

0

10

20

30

40

0 10 20 30 40 50

Top-k

R
es

p
o

n
se

 T
im

e
se

co
n

d
s

PrStack-D1 Eager Top-k-D1

PrStack-D2 Eager Top-k-D2

(e) Time vs. Top-k

0

10

20

30

40

0 10 20 30 40 50

Top-k

M
em

o
ry

 U
sa

g
e

M
B

PrStack-D1 Eager Top-k-D1

PrStack-D2 Eager Top-k-D2

(f) Memory Usage vs. Top-k

Fig. 5. Vary Top-k w.r.t. X1-2, M1-2, D1-2 over Doc2, 5, 6

Figure 5 shows the experimental results when we vary the
top k values from 10 to 40 and we select the first two keyword
queries to be tested for each dataset, i.e.,X1, X2 over Doc2;
M1, M2 over Doc5; andD1, D2 over Doc6. From the results,
we can find that both algorithms will consume more time with
the increase of the required topk values. Especially, when
processing queryX2 over Doc2, we can see a sharp increase
when k is larger than 20 in Figure 5(a). This is because the
document contains 10 more or less results that have the larger
probabilities than the other candidates. In addition, mostof
the remaining candidates have similar and small probabilistic
values. Therefore, in this case, Eager Top-k algorithm needs
to consume much more time when the required number is
increased, however, PrStack does not change a lot because
it still scans the keyword node lists once. From Figure 5(b)
and Figure 5(d), we can find that memory usage nearly does
not change when we increase the topk values. The trend of
memory usage change a little when we evaluate keyword query
D2 over DBLP in Figure 5(f). This is because we randomly
select the SLCA candidates to be computed when we get the
SLCA candidate set based on traditional SLCA computation

methods. If the highest ones can be found early, it will lead
to pruning more nodes.

D. Evaluation of Increasing P-Document Size

0
100
200
300
400
500
600
700
800
900

10M 20M 40M 80M

Document size

R
es

p
o

n
se

 T
im

e
m

s

PrStack-X1 Eager Top-k-X1

PrStack-X2 Eager Top-k-X2

(a) Time vs. Doc. Size

0

5

10

15

20

25

10M 20M 40M 80M

Document Size

R
es

p
o

n
se

 T
im

e
m

s

PrStack-X1 Eager Top-k-X1

PrStack-X2 Eager Top-k-X2

(b) Memory Usage vs. Doc. Size

Fig. 6. Vary Document Sizes w.r.t. X1,X2, k=10

In this subsection, we take XMark dataset as an example
to test the performance of the two algorithms where the top
k value is specified as 10. We test all the five queries of
XMark dataset, but in this paper, we only show the results
of the queriesX1 and X2. From Figure 6(a), we can see
that both PrStack and EagerTopK increase linearly in response
time when the document size increases from 10MB to 80MB.
However, the increase of Eager TopK is much slower. The
comparison illustrates that the second algorithm can obtain
much better scalability than the first one when users are only
interested in a small number of results from a large data
source. Figure 6(b) shows the increasing trend of memory
usage when the document size is varied. Both algorithms have
the similar increasing trend and PrStack can save a bit more
memory than EagerTopK due to the additional maintenance
of UBMap for potential SLCA candidates in EagerTopK.

VI. RELATED WORK

Keyword Query in Ordinary XML Documents Recently,
keyword search has been investigated extensively in XML
databases. Given a keyword query and an XML data source,
most of related work [14], [15], [12], [16], [13] took LCAs
(lowest common ancestor) or SLCAs (smallest LCA) of the
matched nodes as the results to be returned. XRANK [14] and
Schema-Free XQuery [15] developed stack-based algorithms
to compute SLCAs. [12] introduced the Indexed Lookup
Eager algorithm when the keywords appear with significantly
different frequencies and the Scan Eager algorithm when the
keywords have similar frequencies. [16], [17] took the similar
approaches as [12]. But they focused on inferring the meaning
of returned results and discussed the result differentiations
in [18]. To make the results more meaningful, [19] and
[20] utilized the statistics of the underlying XML data to
identify the return node types. And [21] proposed a number
of algorithms for cleaning keyword queries optimally. [13]
designed an MS approach to compute SLCAs for keyword
queries in multiple ways. [22] took the Valuable LCA (VLCA)
as results by avoiding the false positive and false negativeof
LCA and SLCA. [23] proposed an efficient algorithm called
Indexed Stack to find answers based on ELCA (Exclusive

LCA) semantics. In addition, there are other related works
that process keyword search by integrating keywords into
structured queries. [24] proposed a new query language XML-
QL in which the structure of the query and keywords are
separated. [15] introduced a method to embed keywords into
XQuery to process keyword search.

Probabilistic XML The topic of probabilistic XML has
been studied recently. Many models have been proposed,
together with structured query evaluations. Nierman et al.[2]
first introduced a probabilistic XML model, ProTDB, with the
probabilistic types IND -independant and MUX - mutually-
exclusive. Hung et al. [3] modeled the probabilistic XML
as directed acyclic graphs, supporting arbitrary distributions
over sets of children. Keulen et al. [5] used a probabilistic
tree approach for data integration where its probability and
possibility nodes are similar to MUX and IND, respectively.
Abiteboul et al. [6] proposed a “fuzzy trees” model, where
nodes are associated with conjunctions of probabilistic event
variables, they also gave a full complexity analysis of query
and update on the “fuzzy trees” in [1]. Cohen et al. [25]
incorporated a set of constraints to express more complex
dependencies among the probabilistic data. They also proposed
efficient algorithms to solve the constraint-satisfaction, query
evaluation, and sampling problem under a set of constraints.
In [9], Kimelfeld et al. summarized and extended the proba-
bilistic XML models previously proposed, the expressiveness
and tractability of queries on different models are discussed
with the consideration of IND and MUX. [8] studied the
problem of evaluating twig queries over probabilistic XML
that may return incomplete or partial answers with respect to
a probability threshold to users. [10] proposed and addressed
the problem of ranking top-k probabilities of answers of a
twig query. In summary, all the above work focused on the
discussions of probabilistic XML data model and/or structured
XML query, e.g., twig query.

Different from all the above work, we addressed the problem
of keyword search in probabilistic XML data.

VII. C ONCLUSIONS

In this paper, we have addressed the problem of top-
k keyword search over a general probabilistic XML model
PrXML{ind,mux}. Given a probabilistic XML treeT , a set of
keywords and a numberk, we have discussed the challenges
to findk SLCA answers with the highest probabilities. A strat-
egy have been proposed to compute the SLCA probabilities
without generating possible worlds. Based on the strategy,we
have proposed two efficient algorithms. The first algorithm,
PrStack, only needs to scan the keyword inverted lists once,
and after that the SLCA probabilities for all the nodes inT can
be obtained. The second algorithm, EagerTopK, is specially
designed to cater for top-k keyword search by effectively
pruning unsatisfied SLCA candidates using upper bounds. The
experiments have demonstrated efficiency of our algorithms.

VIII. A CKNOWLEDGMENTS

Jianxin Li, Chengfei Liu and Rui Zhou are supported
by ARC Discovery Projects DP110102407 and DP0878405,
and Wei Wang is supported by ARC Discovery Projects
DP0987273, DP0881779 and DP0878405.

REFERENCES

[1] Pierre Senellart and Serge Abiteboul. On the complexity of managing
probabilistic xml data. InPODS, pages 283–292, 2007.

[2] Andrew Nierman and H. V. Jagadish. ProTDB: Probabilisticdata in
xml. In VLDB, pages 646–657, 2002.

[3] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml: A proba-
bilistic semistructured data model and algebra. InICDE, pages 467–,
2003.

[4] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Probabilistic
interval xml. In ICDT, pages 358–374, 2003.

[5] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. Aprob-
abilistic xml approach to data integration. InICDE, pages 459–470,
2005.

[6] Serge Abiteboul and Pierre Senellart. Querying and updating probabilis-
tic information in xml. InEDBT, pages 1059–1068, 2006.

[7] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre Senel-
lart. On the expressiveness of probabilistic xml models.VLDB J.,
18(5):1041–1064, 2009.

[8] Benny Kimelfeld and Yehoshua Sagiv. Matching twigs in probabilistic
xml. In VLDB, pages 27–38, 2007.

[9] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Query
efficiency in probabilistic xml models. InSIGMOD Conference, pages
701–714, 2008.

[10] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. Query ranking in probabilistic
xml data. InEDBT, pages 156–167, 2009.

[11] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv.Query
evaluation over probabilistic xml.VLDB J., 18(5):1117–1140, 2009.

[12] Yu Xu and Yannis Papakonstantinou. Efficient Keyword Search for
Smallest LCAs in XML Databases. InSIGMOD Conference, pages
537–538, 2005.

[13] Chong Sun, Chee Yong Chan, and Amit K. Goenka. Multiway slca-
based keyword search in xml data. InWWW, pages 1043–1052, 2007.

[14] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents. InSIGMOD
Conference, pages 16–27, 2003.

[15] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-Free XQuery. In
VLDB, pages 72–83, 2004.

[16] Ziyang Liu and Yi Chen. Identifying meaningful return information for
xml keyword search. InSIGMOD Conference, pages 329–340, 2007.

[17] Ziyang Liu and Yi Chen. Reasoning and identifying relevant matches
for xml keyword search.PVLDB, 1(1):921–932, 2008.

[18] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result differen-
tiation. PVLDB, 2(1):313–324, 2009.

[19] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective
xml keyword search with relevance oriented ranking. InICDE, pages
517–528, 2009.

[20] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang. Suggestion of
promising result types for xml keyword search. InEDBT, pages 561–
572, 2010.

[21] Ken Q. Pu and Xiaohui Yu. Keyword query cleaning.PVLDB, 1(1):909–
920, 2008.

[22] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. Effective
keyword search for valuable lcas over xml documents. InCIKM, pages
31–40, 2007.

[23] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search
in xml data. InEDBT, pages 535–546, 2008.

[24] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. Integrating
keyword search into XML query processing.Computer Networks, 33(1-
6):119–135, 2000.

[25] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Incorporating
constraints in probabilistic xml.ACM Trans. Database Syst., 34(3),
2009.

