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Abstract—Despite the proliferation of work on XML keyword  open whether keyword queries can be supported, whereas to
query, it remains open to support keyword query over probabilis-  provide keyword search support for users is appealing Useca
tic XML data. Compared with traditional keyword search, it is (1) it can relieve users from learning complex structured

far more expensive to answer a keyword query over probabilistic ies (2) it d i - to k th h f
XML data due to the consideration of possible world semantics. queries; (2) it does not require users to know the schema of a

In this paper, we firstly define the new problem of studying P-document. (A p-document may be integrated from multiple
top-k keyword search over probabilistic XML data, which is data sources, so it could be difficult for users to know its
to retrieve k£ SLCA results with the & highest probabilities of schema in advance).

existence. And then we propose two efficient algorithms. The ; ;
first algorithm PrStack can find k& SLCA results with the & A widely accepte.d. s.emantlcs 0 ’T‘Ode' keyword search
highest probabilities by scanning the relevant keyword nodes result on a deterministic XML tre@ is Smallest Lowest
only once. To further improve the efficiency, we propose a second Common Ancestor (SLCA) semantics [12], [13]. A node
algorithm EagerTopK based on a set of pruning properties which is regarded as an SLCA if (a) the subtree rooted at the node
can quickly prune unsatisfied SLCA candidates. Finally, we , denoted ag%,;(v), contains all the keywords, and (b) there
|mplement f[he two alg(_)rlthms a_nd compare their performance does not exist a descendant nodeof v such thatT},(v')
with analysis of extensive experimental results. . -

contains all the keywords. Consider a keyword quty, k- }
on the p-document in Figure 1(a), the SLCAs di&lD3,
MUX3}. However, for keyword search on a p-document, to

Uncertainty is widespread in many web applications, sugfaively return the SLCA nodes as the answers will bring in
as information extraction, information integration, weatal the following problems.

mining, etc. The flexibility of XML data model allows a
natural representation of uncertain data. As a result, many
probabilistic XML models are designed and analyzed [1], [2]
[31, [4], [5], [6], [7]- In addition to the models themselves
uncertain data management is also becoming a critical issue
in query evaluation [2], [6], [8], [9], [10], [11], algebrai
manipulation [3] and updates [1], [6].

In this paper, we adopt a popular probabilistic XML model,
PrxXML{ind:muz} 9] which was first discussed in [2]. In
this model, a probabilistic XML document (p-document) is
considered as a labelled tree, consisting of two types oés0d
ordinary nodes representing the actual data drstfibutional
nodes representing the probability distribution of theldthi
nodes. Distributional nodes have two types, IND and MUX.
An IND node has children that aradependent of each other, —
while the children of a MUX node anautually-exclusive, that
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is, at most one child can exist in a random instance document G T /N,
(called apossible world). A real number from (0,1] is attached aV SN VRS [ L
on each edge in the XML tree, indicating the conditional L TN L L -

probability that the child node will appear under the parent
node given the existence of the parent node. An example of
p-document is given in Fig. 1(a). Unweighted edges have 1 as Fig. 1. An example of probabilistic XML document
the default conditional probability.

To query a p-document, existing works focused on using False Positive ProblemCase 1: False SLCA node is intro-
structured XML queries [8], [10], e.g., twig queries. It reims duced by MUX semantics, e.g., nodéU X3 is an SLCA, for

(b) An encoded p-document



B4 containsk;, Cg containsk,, but MUX3 is a false positive, of the query keywords. Such tables are easy to obtain for

becausd3, andCys cannot appear together under MUX3. Caskeaf nodes in the p-document. For an internal nedehe

2: Distributional nodes are identified as SLCAs, e.g., SLCpArobability distribution table ofy is computed by combining

nodes{IND3, MUX3} are all distributional nodes, but it isthe probability distribution tables of’s children according

natural to constrain results to be ordinary nodes. to v’s type. Different node types (IND, MUX, ordinary) are
False Negative ProblenCase 1: False negatives are causdteated differently. Section Il explains the details.

by false positives, e.g., sincND3, MUX3} are wrongly  To target the second challenge, we propose two algorithms,

identified as SLCAs, more proper answeiS;,Cs} are ig- PrStack and EagerTopK, to find the tégerobabilistic SLCA

nored according to SLCA semantics. Case 2: All the ancestor@des without generating possible worlds. PrStack algorit

of a traditional SLCAwv,., In a p-document may becomescans all the keyword match nodes once. It uses a stack to

SLCA answers, becausg;., may not appear in some possibleguarantee that the SLCA probability of a node is determined

worlds, which brings in the possibility that,;.,'s ancestors after all the SLCA probabilities of the node’s child nodes

may be SLCA answers, e.d.3 is an SLCA in some possible have been determined. A result heap is used to collecktop-

worlds containingB, but notCg, becausé’s is not an SLCA SLCA answers. While EagerTopK does not scan the keyword

for those possible worlds. match nodes in document order. It first computes traditional
From the above discussion, we can discover that the faillBeCAs disregarding the node types of the SLCAs and their

for enforcing traditional SLCA semantics on a p-document {grobabilities. Then it traces from these preliminary SLCA

due to the variety of possible worlds of the p-document. Iresults upward towards the root of the document, picks out

other words, a node may be an SLCA in one possible worlidhe ordinary nodes as SLCA answers and computes their

but not in another. Consequently, an appropriate modifinatiprobabilities. During the process, several probabilitypemp

is to model keyword search result on a p-document by a sethwfunds can be used to quickly discard candidate SLCA results

2-tuples. Each 2-tupléy, f) is composed of as a node in the without physically computing their probabilities, becaukeir

p-document and’ as the probability (confidence) farto be probability upper bounds are already less than the cuktmt

an SLCA in the possible worlds. To be specificy iippears as highest probability. Section 1V introduces the algorithins

an SLCA in multiple possible worlds, the probability of tieos detail.

possible worlds will be aggregated to give the confidence forWe summarize the contributions of this paper as follows:

v to be an SLCA on the p-document. However, the answer, To the best of our knowledge, this is the first work that

set may be empty or too large if we do not set a proper studies keyword search over probabilistic XML data.

probability threshold tof. Such a threshold is likely to be o We have discussed the principles to calculate the SLCA

different for different datasets, and is hard to determime i probability for an element when its sub-elements follow

advance. It is natural to give usersanswers with the highest independent distribution or mutual-exclusive distributi

probabilities, wheré: can be specified by the users. Tosumup,  The calculation does not require the generation of possi-

the problem we will study in this paper is, given a p-document  ple worlds.

a set of keywords and a positive integerwe want to findk « We have proposed two algorithms, PrStack and Eager-

nodes from the p-document with the highest probabilitidseto
SLCAs. Note that if there are only (k' < k) SLCA nodes
with non-zero probabilities, we only return theseanswers.

TopK, to compute togs SLCA results with the highest
probabilities without generating possible worlds. Pr8tac
is easy to implement, while EagerTopK is relatively more

There are two major challenges: how to compute the proba- complex, but terminates earlier in most cases, because
bility for a node to be an SLCA and how to find out the SLCA  EagerTopK uses tighter bounds to prune unpromising
nodes with topk probabilities. A straightforward solution is results.
to firstly generate the possible worlds and their correspand  + Experimental evaluation has demonstrated the efficiency
probabilities from the given p-document, and then evaluate of the proposed algorithms.
the keyword query on each possible world and combine theThe rest of this paper is organized as follows. In Section II,
SLCA results on all the possible worlds, and at the same tifj& introduce the probabilistic XML model and the formal
probabilities are aggregated if necessary. Finally, ta pigt k. semantics of keyword search result on a probabilistic XML
SLCA answers with the highest probabilities. Unfortunatel yocument. Section Il first presents an encoding scheme with
this method is time-consuming or even infeasible to procegse consideration of distributional nodes, then discussss
a p-document which has encoded a substantial number@fcompute the SLCA probability in the presence of different
possible world variations. More efficient and feasible §0hs  istribution cases. In Section IV, we propose two algorghm
are sought-after. to find top-k SLCA answers in terms of their probabilities.

To tackle the first challenge, we propose how to compuie report the experiment results in Section V. Section VI

the SLCA probability for a node on a p-document withouiscusses related works and Section VII concludes the paper
generating the possible worlds for the p-document. The com-

putation follows a bottom-up manner. For each node the Il. PROBLEM DEFINITIONS
p-document, we compute a probability distribution table to Probabilistic XML A probabilistic XML document (p-
record the probability forv to contain all or none or part document) defines a probability distribution over a space of



deterministic XML documents. Each deterministic docume®t103. The probabilities of the other possible worlds a®yea
belonging to this space is called a possible word. A pe calculate following the above procedure.
document represented as a labelled tree trabnary and

distributional nodes. Ordinary nodes are regular XML nodes C, ¢, G C C ¢
and they may appear in deterministic documents, while dis- I I I I
tributional nodes are only used for defining the probaliilist /\.
process of generating deterministic documents and they do b, D E D, E &
not occur in those documents. As we adopt Pr)iNmmuz} kokke ke ke ke
as the probabilistic XML model, two types of distributional 05 0063 0.007 0027 03 0.103
nodes,IND and MUX, may appear in a p-document.
Example 1: Consider the p-documerﬂ“ shown in Fig- Fig. 2. Example of deterministic trees rooted(at

ure 1(a). Ordinary nodes are shown with their tag names, e.g. .
B, Bs, C1, andCs. For the two types of distributional nodes, 10P-k Keyword Query A top-k keyword query consists of
MUX is depicted as rectangular boxes with rounded cornét$et of keywordgky, ks, . .., kn } and a positive integek. We
and IND is displayed as circles. Consider theD2 node. It define the answers for a top-k keyword query on a p-document
has two childrenC; and B, with the existence probabilities I’ @Sk ordinary nodes ofi” with the highest probabilities to be
0.6 and 0.5, respectively. Thus, the absence probability f8LCAS in the possible worlds generated’byThe probability
neitherC, nor B, appearing is (1-0.6)*(1-0.5)=0.2. ConsidePf 2 né)dev being an SLCA in t_he possgble W(_)rlds is denoted
the MUX2 node that has three children, namely;, E» and @S P75icq(v). The formal definition ofr (., (v) is as follows:
the IND3 node. Their existence probabilities are 0.5, 0.3 and m
0.1, respectively. Hence, the probability for none of them Pr&..(v) = Z{Pr(wiﬂslca(v,wi) = true} 1)
appearingis1-05-0.3-0.1=0.1. i=1
Given a p-document tre, we can generate all possiblewherews, ..., w,, denotes the possible worlds implied By
worlds or deterministic documents as follows. Basically Wgica(v, w;) = true indicates thav is an SLCA in the possible
traverseT” in a top-down fashion. When we visit a distribu-world w;. Pr(w;) is the existence probability of the possible
tional node, two situations need to be dealt with differentlworld w,.
(1) If it is an IND node withm child nodes, we generag" To develop the above discussioRsG,  (v) can also be
copies of7’, delete thelND node, replace the: child nodes computed with Equation 2. Her&@r(path,_.,,) indicates the
with one distinct subset of them for a copy, and connect eagkistence probability of» in the possible worlds. It can be
child node in the subset to the ordinary parent node of &2 computed by multiplying the conditional probabilities i
node. For each copy, the probability for this copy occuriBig along the path from the roat to v. Prl_ (v) is the local
the product of all existence probabilities of the child nede probability for v being an SLCA iNT g5 (v), Where Ty, (v)
the subset and the absence probabilities (i.e., one miras danotes a subtree @t rooted atv.
existence probability) of the child nodes not in the subgst. o .
If it is a MUX node withm child nodes, we generate + 1 Prea(v) = Pr(path;—y) X Preq(v) 2
cqpies ofT,_ d.elete thd\/IUX node, reple}ce thex child nodes computePrk_ (v)
with one distinct child node or no child for a copy, and fog, Equation 1.
the former, connect the child node to the ordinary parenenod
of the MUX node. For each copy, the probability for this copy I m
occurring is the existence probability of the distinct diibde Prli () =Y {Pr(t:)|slca(v, t;) = true} 3)
in the subset or the absence probability for none of the child i=1
nodes appearing. For each generated cop¥,ofve continue wherem’ deterministic trees$t,, o, ..., t,,,/ } are local possible
the top-down traversal until all distributional nodes agtetied. worlds generated fronTs,,(v), Pr(t;) (1 < i < m’) is the
At the end, each distinct copy becomes a possible world pfobability of generating; from Ty, (v); slca(v,t;) = true
T. In the case that two generated copies are the same, th&gansv is an SLCA node irt;, namely the root node is the
are merged with the probability as the sum of the individuainly LCA node int;.
probabilities. Example 3: We give an example to computerS  (Ch). It
Example 2: For the p-document subtree rooted @f in is not difficult to see thaPr(patha_c,) =1%0.25%0.6 =
Figure 1(a), all its possible worlds can be found in Figure @15. To computePrL  (v), after examining the seven local
by running the above procedure. WhetJX2 is visited, four possible worlds forTs,,(C1) in Figure 2,C; is an SLCA
documents are generated and the one WNB3 in turn gen- for only one local possible world with probability 0.63, so
erates 4 more documents, resulting in 7 documents generated have Prl (v) = 0.63. As a result, Pr§_(C)) =

slca slca

in total. Among them, there are two copies containing a singPr(patha—_.c,) x Prk_ (C1) = 0.15 % 0.63 = 0.0945.
node Cy: one whenMUX2 is visited with the probability 1-  Although Equation 2 and 3 have simplified the computa-
0.5-0.1-0.3 = 0.1, and the other whEXD3 is visited with the tion, a straightforward implementation cannot avoid gatieg

probability 0.1*(1-0.7)*(1-0.9) = 0.003. So the sum of thé&n possible worlds. Since it is already tedious for enumegatin

, we have the following equation similar



possible worlds for a small probabilistic subtré&g,;,(C1), 1) Nodep isan IND node: For each child node;, we first
one can imagine the workload for larger subtrees. Howeveromote its distributiortab;={(2!?! —1) — H21@i—1), -0 —

observing that for an ancestor-descendant node (pairvg), 1o} by multiplying with its local conditional probability;. As

local possible worlds ofT,;(vs) always constitute local such, the updated distribution is refreshedﬂé“:{@\@\ _

possible worlds off,.; (v, ), it may be appropriate to computel) — \; x H21@l—1)s = 0 — (N\i * o +1—X;)}. The general
PrS§..(vq) first, and reuse part of the computation done fasquation is displayed as follows.

slca

vg when we computePrS;  (v,). This point motivates our

SLCA-probability computation method and algorithms. They rapD = JT = dix po|Va € tabi, @ # 0} @
are conceptually in a bottom-up manner. ! {z — (N *pg +1—X\)|z =0}

I1l. OVERVIEW OF THIS WORK And then we mergeab!' with the distributiontab,={(2/?! —

r p i H H
In this section, we briefly introduce an encoding scheme o — Hatai—gyr = 07 = pip} Of.p using a set obitwise OR
a probabilistic XML data tree and then go through the meth@tperations bounded by the maximal s{2€?/ —1)*. Generally,
of computing probability of SLCA results without generagin keyword query size is around 3 or 4. In addition, we only cache

possible world. the none-zero values in the distributional table. As suets |
of operations can be avoided. To guarantee the completeness
A. Encoding Probabilistic XML Data of the results, we execute the bitwise operations tfmﬁ”

aégjtabp. The corresponding values will be multiplied and as-

Dewey encoding scheme has been verified and applied X o
an effective and efficient way in previous keyword searcﬂgm'}d 1o the corresponding keyword distributions. At iia

approaches [12], [14]. Given two keyword nodes, it is easy F&mputed results will be aggregated together as the updated
get the common ancestor by comparing their Dewey codd&by-

In this work, we extend the Dewey encoding scheme for

adapting to prObabI!IStIC XML documents. To do thls, w%bp, ={z— ZM*H“Z — 2 ORy,Vz € tabl(T),Vy € tab,}
encode each node into a number that represents its Dewey (5)
number while a char “M” or “I" is attached before the number tab, does not exist at the beginning, i.e., all the values

for MUX or IND nodes. .Figu.re 1(b) demonstrgtgs the resul%e zero, we directly assignb(-“ to tab, without any compu-
of encodllng .the npdes n F'.g.ure 1(a). In .a_Qdmon, each Ief"?;ttion. The final distribution of the IND node can be obtained
node maintains a list of conditional probabilities from tioet

" s by processing all its relevant child nodes in the similar way
to the leaf node. The recorded conditional probabilitias loa . , :
used to calculate the probability of SLCA results. The dethi Example 4: Lets consider the IND node 1.M1.12.1.M1.12

) . : . o and its two children D, and E; w.rt. a keyword
encoding algorithm is omitted due to the limited space. query {ki,ks}. The distribution of keywords inD, is:
Ds.tab
B. Directly Computing Probability of SLCA Result 11]10]o1]oo| As we know the local conditional probability
0[1][0]0
In this section, we illustrate the procedure of directlyf ), |s‘ 0.7, the promoted distribution db, can be updated

computing probability of SLCA result from a given set of Dy tab™ . T
keyword nodes, rather than from the possible worlds. ITi0ToiT 00 ], which becomes the start distribution

: 0107/0 03
ConS|d¢r a.keywc_)rd query Q 1, ..., k, } and any parent tab, of the IND node. Here,Ds.tab(?) : 00 is set as 0.3,
node p with its chllq_ nodesci, wny Ce FOT eachci, Ai  not 0 according to Equation 4, which also conforms to the
represents the conditional probability of when p appears, |ND semantics. Similarly, we can get the promoted distitut
while tab; is a table with the maximal siz2/?! maintaining ' Ey.tahD S
the keyword distributions (a1 1y, .., 1o} in nodec;. Our of £, as: 101} 10 } 8;} 0. Because the distributionab,

task is to calculate the distribution tabieb, of nodep based

. contains non-zero values now, we should mefgeab! into
ontab; and\; wherel < i < m. To make the calculation easy, ey

tab, by a set of bitwise operations:

we utilize binary number to represent keyword distribusion  “"5r 0 — 117 (Erab™ = 01) + (taby : 10) = 0.9 0.7 = 0.63;

in each table. For example, given a keyword quéky,k.}, 01 OR 007 = 017 — (Ey.tab() : 01) * (tab, : 00) = 0.9 x 0.3 = 0.27;
distribution ‘11’ - ‘u3’ means the probability thap is an 00 OR 107 = 10¢" — (E;.tab() : 00) * (tab, : 10) = 0.1 % 0.7 = 0.07;
SLCA that contains bottk; and ko; ‘10" - ‘ uo’ means the 00 OR 007 = 007" — (E;.tab(?) : 00) * (tab, : 00) = 0.1 % 0.3 = 0.03.
probability thatp containsk,, but notks; ‘01" - 1 MEANS g such, thetab, will be updated as| it \ 1om\bp,01 (00 |.
the probability thafp containsk,, but notk;, and ‘00" - ‘ug P 0.63[ 0.07| 0.27| 0.03
means the probability that contains neithek; nor k. The computing procedure still conforms to the possible @vorl

Due to the features of probabilistic documents, the paresemantics because the union of the current distributions in
nodep may be an ordinary node, an IND node, or a MUXab, is still equal to one.
node. For different node types, we have to adopt different2) Node p is a MUX node: For each child node;
methods to compute the distributions of keywordginsing (1 < i < m), we first promote its distributiomab;={(2!¢l —
its child nodes’ distributions. 1) — Blei—1), = 0 — 1o} by multiplying with its local



conditional probability\;. As such, the updated distributionthe edge between them is an ordinary edge. Si@geis
is refreshed astabl(.T)={(2‘Q‘ — 1) — XA * pggiei_1y, -, an ordinary node, we begin to check if it is an SLCA
0 — X; * uo}. The general equation is provided as follows. candidate. Because of.tab : 11 — 0.063, we calcu-
) late the probability ofC; becoming an SLCA result as
tab; " = {x — Ai * |V € tab;} ) Pr(path, )*C;.tab : 11 = (1%0.25*0.6)*0.063=0.00945. After
Next, we can directly add the keyword distribution value$at, C1.tab will be updated by assigning zero @.tab : 11,

. . . . C.tab Cy.tal/
in tablm into the corresponding parts itub, based on the je., 11 | 101\(101 [ 00 | = [11] 10 \1 o1 [ 00

understanding of MUX semantics, i.e., child nodes of a MUX _ [ 0.063] 0.507] 0.327] 0.103 0 [0.507] 0.327] 0.103

node cannot co-occur at the same time. Therefor, can ~ COnsiderCs and its child nodes’s, Bs andCs. Vge f;rst get
4.tab

be obtained by aggregating from the corresponding partsthé keyword distributions fron;, and Bs: [11]10[01] 00

taby, andtab!” (1 < i < m) with the following equation. — ofoJ1]o
As an acute reader, you may find that the computation of7T15To1T00|. After their distributions are promoted and

taby : 0 — o is a special case. It is equal to the aggregationo [ 1 [0 [0

of all child nodes tab() : 0 — 4o and an extra part Merged, we get the distributions of their parent nade
Cs.tab

1— 37", Ai. The value can be obtained with the promotiontiT1o [ o1700]. Although Cs.tab : 11 has already been in-

of each related child node, which does not require extra costl [ 0 [ 0 [ 0 ) o ]
creased to 1, but we have to consider the remaining child node

M Cs which may produce SLCA results and reduce the value of
taby = {z — p, + pe|2 = x,Va € tab; ’,Vz € taby}; (7)  Cs.tab: 11. In this example, the probability faf; becoming

After all tabE” are processed, a new SLCé't[Esult is 0.5, which comes frof; and Cs,

" where[ 11710 [01]00]. SinceC} is also an ordinary node and
taby : 0 < taby : 0+ (1 =Y Ni). (8) containglstkgsf‘ul? {(eoyword distribution, its global probiityi
i=1 can be computed as Pr(path*(Cs.tab : 11) = 1*0.3*1*0.5
Example 5: Let's consider a MUX node (1.M1.12.1.M1) = 0.15. After that, we promot€'s.tab : 10 — 0.5 to C3.tab.
and its child nodesD;, an IND node andFE, w.rt. As such, the probability fo€3 becoming an SLCA candidate
a keyword query {ki;, k2}. At the beginning, we can be computed as Pr(path*(Cs.tab : 11*Cs.tab : 10) =
ssume that their (}in\§['[)rj(l?butions re listed as followd*0.3*1*0.5=0.15. After outputting the SLCA candidate, we

.tab Es.tab . . .
TrTi0] 01 00| 1L [ 10 [ of [0 | [fi[iooifoo|. Then exclude the value ofs.tab : 11 by setting it as zero, ie.,

01|00 [063[007/027[003] [0 0|10 = lcg-taé”l 5
we promote them to their parent node by considerin = } = } o } ol

their local conditional probabilities: 0.5, 0.1 and 0.3, To make the above examples clear, we allow the distribution

respectively. Their distributions are updated as followgaples contain zero values. In fact, we only need to maintain
D .tab IND.tab™ Ey.tab™

1110 | 01] 00 1T ] 10 | 01 [ 00 11[10] 01 00]. the none-zero values in our implementation. We can get the

0[05[0]0 0.063 | 0.007 | 0.027 | 0.003 0] 0][03]0 probability of each SLCA result as Example 3 by repeatedly

ased on the updated distributions of child nodes, the digg|ling the above three types of operations.
tribution of their parent node can be calculated as follows.

117 — (Dy.tabD) : 11 + IND.tab(D) : 11 + Ey.tab(D : 11) = 0.063; IV. ToP-k KEYWORD SEARCH

10¥" — (Dy.tabD : 10 + IND.tab) : 10 + Ep.tab : 10) = 0.507; ALGORITHMS

017" — (Dy.tabM : 01 + IND.tab() : 01 + Ey.tab(? : 01) = 0.327; ]

00" — (IND.tab : 00+ 1 — 0.5 — 0.1 — 0.3 = 0.103). Given a topk keyword query{ki, ko, ..., k,} and a

As  such, the tab, will be updated as: probabilistic XML data tree, our target is to quickly find the

MUX2.tab? . k best SLCA results with the highest probabilities. To do,this

1L [ 10 [ o1 [ oo |. The computing procedure alsot . . ) . :

0.063| 0507 0.327] 0.103 wo algorithm are introduced, PrStack algorithm is realig
holds the possible world semantics because the union of #@nning the keyword nodes once in a document order while
current distributions irtab, is still equal to one. EagerTopK algorithm is designed based on a series of upper

3) Node p is an ordinary node: The procedure is similar bound properties.
to the IND case. The computational equation is the same as .
Equation 5. However, the difference is that we may generdte PrSiack Algorithm
an SLCA candidate with its probability when the value of In this section, we introduce a stack-based algorithm,
tab, : (2191 — 1) is not equal to zero. As such, we removédrStack, to discover the SLCA nodes with tlte higest
(2191 — 1) from tab, because the probability of an SLCAprobabilities in a probabilistic XML tree.
node can not contribute to its ancestors again due to the SLCAL) The idea of Pr&ack Algorithm: PrStack scans all the
semantics. keyword inverted lists once. It progressively reads keyvor
Example 6: Consider C; and its child MUX2, we can match nodes one by one according to their document order
directly take the keyword distribution MUX@ib?" of MUX2  from the inverted lists, and compute the probabilities foe t
as that ofC; because MUX2 is the only child of; and SLCA nodes that are ancestors of the keyword match nodes.



The principle is that, when computing the probability of aflgorithm 1 PrStack Algorithm

SLCA nodeuw, it has retrieved all the keyword matches thatput: a keyword query{ki, ..., k,} and an encoded probabilistic
are descendants af from all the keyword lists. In other XML data treeT’

words, the SLCA probability of a node is determined after °UIPUt: top k ranked SLCA resultst ,

the probabilities of all child SLCA nodes of have been ¥ fri;j unoc?aet “Stsf;g‘st} 1 <isn viv— Prlink, create
determined. The newly computed probability, together with i ;

: ' ' k : 2: get the smallest Dewey from L;
corresponding SLCA node, will be inserted int&-&ize heap 3: initiate astack using the Dewey;
if the new probability is larger than the currehth highest ~4: while NextNode() # null do
probability. 2: :; ¥ g??ﬁ;%%ﬁéﬁ to its parent(v) then

. . : v v
. Figure 1(a) shows the order of SLCA' pr.obgblllty Icom/E:)uta-r p = lep(stack, v'); {find the longest common prefixsuch
tion for some of the nodes. The order is indicated"loy" . that stack[i] = v[i], 0 < i < p.length — 1}
It is not difficult to see that the probability-computatiorder  8: while stack.size > p.length do
equals to the order for visiting nodes in a postorder tralers 9: v = stack.pop(); - 3
of the tree. This probability-computation order can beireal 1% get typeg) and local conditional probability Icproby
oo . 11 if v is an ordinary nodeghen
by maintaining a stack. The probability of each SLCA nod(_?z_ GenerateResults];
can be computed according to the formula in Section Ill. 3. if p(v) ¢  then '
14; DirectPromotion(, type(), lcprob@), p));
TABLE | 15: else
HASHMAP ¢ : v — dist 16: CombineProhy, typew), Icprob), p());
17: stack.push(’[j]) for p.length < j < v'.length;

node e 18: use similar procedure from Line 9 to Line 16 to process the rest

s | oo | e e S of nodes instack until it becomes empty;

1.M1.4.1 {10 -1 1.M1.4.2 {01 — 1} 19: return R;

1.M1.4.3.M1.1 {01 —1 1.M1.4.3.M1.2 {10 — 1} .

LMLAS2 -1 Function GenerateResult

1: get distributiondist of v from ; {v is a real SLCA ifdist
2) Index Structure: Before explaining the algorithm, we N

first introduce two indexes that will be used in the following Pont?tinsm}
sections. The first index is used to maintain the relatignshi2 if v is @ real SLCAthen ‘
between a node and its local probabilistic keyword distri- + getthe local probability '-%-Tfrom dist;
; ) . ' 4. get the multiplied conditional probabilities Pr(pathfrom
butions dist w.r.t. a given keyword query). It is denoted v);
asp : v — dist. p is initiated and updated during the time 5:  pr$ = Prl * Pr(path,);
that we load keyword nodes from database. The maximal siZe  if The number of current results is less thathen
of ¢ is equal .to the total numb?r of keywc.)rd r.]Od.es'.During7: els%uitf%rvg igrlvarlg(tecr) tlfl’an k-th highest value in tRen
query evaluation, once a node is prqbed, its distributicars ¢ . remove the k-th candidate and put— pr€ into R;
be removed fromp and promoted to its parent based on they.  remove P} from dist:
formula in Section Ill. Table | displays the status after we1: write v and the updatedist back toy;
load all the keyword nodes w.r.) = {ki,k2}. And we
use dist to record the mapping from keyword distributions
to their probabilities. The maximal size afist is equal to
2|9l For instance,l0 — 1 represents the local probabilityv’ with the next smallest Dewey code by calling Function
of a node only containing:; is 1 w.r.t. the queryQ. The GetNextNode(L) that records a cursor for accessing the next
second index keeps the mapping between a node and itsng@dle of L. Next, we need to compute the longest common
conditional probabilities. It is denoted as: v — PrLink. prefix p betweenv’ andwv (in stack). If stack.size is larger
For example, the conditional probabilities @f; is a link, than the length op, which means that there is no ancestor-
[1[025][06]1[05] descendant relationship betweeh and v, then we get the
3) Description of Pr&ack Algorithm: The detailed proce- Dewey code ofv by accessing the code components in
dure of PrStack algorithm is shown in Algorithm 1. We firsgtack from bottom to top and pop outfrom the stack. We
load the relevant keyword node lisfs and their conditional then identify if v can become an SLCA result, as shown in
probabi"tiesfy_ At the same time, the map between nodé.g.ne 10-Linel2. Ifv is an Ordinary node, we call Function
and keyword distributions can be built based on the loadé&fnerateResults() in Algorithm 1 to generate a new SLCA
keyword nodes. Then we get the first nodethat has the result if it exists. If the type of is IND or MUX, we only
smallest Dewey code froni and initiate astack based on Pop the stack and promote the distributionsvdb its parent
the Dewey components of To simplify the explanationsy  P(v)-
is also used to represent its Dewey code. To correctly make the promotion, there are two different
After that, we process the rest of keyword nodesZin cases in Line 13-Line 16: (1)(v) does not exist inp, we
one by one in a document order until the endlofLine 4- can directly promote théist of v to p(v) by calling Function
Line 17 shows the detailed procedure. It firstly get the nod&rectPromotiong, type(v), leprob(v), p(v)). To make direct




promotion, we only need to multiply the values ifist Explanation: in fact, Pr&_ (v) should be 0, because a
(p(v)) of v by its local conditional probabilitycprob(v) as MUX cannot be an answer. But we still calculate —
Equation 4 and Equation 6. The specific consideration is*givgg’;l(Prﬁl(vq)), because it gives an upper bound for all
to the “0” distribution by adding the extra pdit—icprob(v)) v's ancestors to be an SLCA like Property 1.

as Equation 4 for IND or Ordinary nodes and Equation 8 Here, Pr&,() can also be calculated in a bottom up manner.
for MUX nodes. (2)p(v) exists iny, we have to merge the For an IND or ordinary node,

dist coming fromwv with the existingdist’ of p(v) together m
by using Function CombinePrab(type(v), leprob(v), p(v)), Pré,(v) =1- H(1 — Pr&,(v.,)) + PrS,,(v)  (9)
which implements the procedure of using Equation 5 and im1

Equation 7. The specific consideration of this procedure jg . 5 Mux node,

also focused on the computation of “0” distribution when

is @ MUX node. We need to subtralkefprob(v) from the “0” p p 10

distribution value. (v Z rein(ve,) (10)
After we process all the popped nodes fremuck until

stack.size is equal to the length gf, we push the unmatched . X

components O?v’ into stack.gThgfabovg procedure will be v's children have been discovered when we compute the upper

repeatedly processed until no keyword nodes are left. At |ag0und lforlv However, tge pl’erEQL]ICIZIte cand be relzl\lxhedh For

we pop out the rest of nodes iack and process them usingexamp e, lewy,, .. e a set of descendants oiwhic

the similar procedure untilfack becomes empty, as shown Indo not have ancestor descendant relationship, supposawee h
Line 9 to Line 16 in Algorithm 1.

known PrS&, (vg,) for eachd;. We have Property 3.
Property 3: No matter nodev is an IND or ordinary or

In the above analysis, given a nodewe assume that all

B. EagerTopK Algorithm MUX node, we have the following equation:
In this section, we propose an eager algorithm, EagerTopK,
for catering for topk keyword search. It starts from the set Z Prieq(vi) < H (1= Prgy(va,)
of initial SLCAs and then select the promising candidates Vi€Vr—o
to evaluate. EagerTopK can quickly find tépanswers by Explanation: For an IND or ordinary node, according to
pruning the unsatisfied candidates. Equation 9, we have — Pr%, (v) = [[~, (1 — Pr&,(v.,)) —

1) Pruning Properties: Before introducing the algorithm, PrS_ (v) < [, (1 — PrS,(v.,)). Similarly, for a MUX
we introduce some upper bound properties that can be usede, according to Equation 10, we have PrS,(v) =1 —
to prune unpromising nodes without physically computing thy .-, Pr&,(v.,) < [1i~,(1 — Pr%,(v.,)). For both cases, we
SLCA probability of those nodes. Assume we want to compul&ve:

the probability for an SLCA node, let the set of node on the 1 - Pré,(v) < ﬁ(l — PrS,(v.,)) (11)
path from the root- to nodewv (including v itself) be V,_.,, a4 altime:
and letv.,,...,v.,, be the children ofv on the p-document

As a result, we have the Equation 12. The last step is due to

T, let Pr&, (v..) denote the probability that node. covers o i X )
au(Ve:) b y de, a recursive induction using Equation 11:

all the keywords in the subtree rooted watin terms of the

possible world semantics. We have the following properties Yviev, Préio(vi) <1377 Pré(ve,)
Property 1: If nodev is an IND or ordinary node, we have <II™, (- Pra”(vcl)) (12)
the following equation: <II%, 1= Pr&(va,))

m Property 3 can be used to improve the upper bound progres-

Z Priea(vi) H (1= Prgi(ve,)) sively. To give an example, at the beginning, the upper bound

vi€Vr—y =t for a nodev is 1. After obtaining Pr&,(vs,) where vy, is
Explanation: The reason is that an SLCA exists on the patan descendant af, we can update the upper bound foby
r — v implies there is no SLCA in any of the subtree rooted — Pr¢),(vq, ). To follow the process, when we have obtained
atve, (i € [1,m]). ConsequentIYHz L (1= PrS,(v.,)) not  Pr&,(va,), wherevy, is a sibling ofvy, (v, is also a descen-
only gives an upper bound faPr¢_ (v), it is also an upper dant ofv and shares the same parent witl), we can update
bound of PrS,, (v') for any nodev’ on the pathr — v. If the upper bound fov as (1 — Pr&,(vq,)) * (1 — Pré(va,)).
1", (1 — PrS,(v.,)) is smaller than the currerith highest One tricky step is, when we have obtaind; (v,), herev,
SLCA probability, we can safely prune all the nodes on the the parent ofuy, andwv,,, the upper bound of, which is
pathr — v. currently (1 — Pr&, (va, ) * (1 — PrS,(va,)), can be improved

Property 2: If node v is a MUX node, we have the follow- as1 — Pr¢ (v,) by multiplying (P ({JdID);:l(ll(va)T —5
all 1 all 2

ing equation: sincel — Pr(vy) = (1 — Prgy(va,)) * (1 — Prg(vay)) —
PTslca( ) = (1 - Prgl(vlh)) * (1 - Prall(vdz)) The trley
Z PTslca v;) <1-— Zprall Ve, ) step implies that whenever we go upward and gain some new

Vi€V information, such asPr€_ (v,), the upper bound of higher



nodes may be reduced further. Consequently, the upper botméroperty 3 where the nodes with different types can bet deal
is decreasing as we continuously probe the SLCA candidatesh in a similar way. If§ is equal to or less than thie-th

in a bottom-up manner. largest valuep(v) will be recorded into a set DeleteSet, i.e.,
Property 4: If node v is an IND or ordinary node, then its both p(v) and its ancestor nodes cannot become new SLCA
SLCA probability satisfies: results w.r.t. the top-k keyword query. #f is larger than the
m PrG,(v,.) k-th highest valuep(v) and its upper bound will be cached

Pr&..(v) < Pr(path,_.,) * H (1— =22 ) into a candidate sdtBMap.
=1 Pr(pathr—.) We repeat the above procedure for each SLCA candidate
Explanation: here, Pr(path,_.,) is the probability forv to in S and promote its keyword distributions and upper bound
occur in the possible worlds. In the local possible world® its parentp(v). If p(v) or its descendants have existed in
generated byT,.;(v), 1 Prgy (ve,) gives the prob- DeleteSet, thep(v) can be discarded directly without further

ability that ¢; does not _coﬁtrémthéﬁv)the keywords giververification. After all the SLCA candidates ift are processed

the existence ofv. Following an independent distribution, N the similar way, we can have a set of potential candidates
in UBMap, from which we can select the candidate with the
highest upper bound as a promising candidate to be processed
. PrS (vo.) + - continuously.

IT%, (1 — gt t5) is an upper bound for the global Given a promising candidate € UBMap, we first check
probability Pr&_ (v). Compared with Property 1, Property 4vhetherv could be an SLCA answer by using node upper

slca

gives an upper bound for a single node. Similarly, we haw®und properties, Property 4 and Property 5. If so, we begin

G
I, a- %) gives an upper bound for the lo-

cal SLCA probability Pr%_ (v). And thus, Pr(path,_.,) *

slca

Property 5. to calculate its keyword distributions. Based on the keyivor
Property 5: If node v is a MUX node, then its SLCA distributions and the calculated path upper bound value, of
probability satisfies: we need to update the candidates that are the ancestor of

" prG (o) in UBMap. And thenp(v) and its upper bound is put into
——alln UBMap. If the node upper bound efis equal to or lower than

= Pripath,—.) the kth highest probability inR, v will be suspended. After

To sum up, based on Property 1 and Property 2, \eat, we promote the upper boundwto its parentp(v) and
can prune the nodes that are the ancestors of a nodeollect the extra aggregated upper bounds of descendants of
if TI~, (1—Pr%(ve,)) (v is IND or ordinary) or1 — p(v) from UBMap which may reduce the upper bounch¢f).
> Pré(ve,) (vis MUX) is smaller than the curreritth v will be released until its parent node needs to be computed
highest SLCA probability. The most often used property ir pruned.
Property 3. The bound is looser than those of Property 1
and 2, but still has good pruning power, because we can
decrease the upper bound for a node using its descendarg node
without necessarily knowing all its children’s upper bound
can be decreased earlier. Moreover, based on Property 4 and
Property 5, we can postpone the calculation of a nodetil
one of its ancestors cannot be pruned by the upper bounds.

2) The idea of EagerTopK Algorithm: We first scan the Fig. 3. Example of updating the path upper bounds
keyword node lists to compute and get SLCA candidateSset
using any traditional SLCA algorithm, in which distributial Example 7: In Figure 3, assume we have found the SLCA
nodes are treated as ordinary nodes. As a reSuttay contain candidatesS = {v;, vs, v} based on traditional keyword
false positive SLCA candidates. And then, we compute tisearch methods. We first calculate the SLCA probabiityf”
probability Pr®(v) for each SLCA candidater in S. To of v; and then calculate the upper bound of its parent.e.,
calculatePr“(v), we need to access and remove the relevait = 1 - Pr¢{. Similarly, we can process; and calculate the
keyword nodes, which are the descendant nodes, dfom upper bound of its parent,, i.e., 4 = 1 - Pr{. After vg
the keyword node lists. In this proceduremay be taken as is processed, the upper bound«@fis 1 - Pr§. But as we
a result to be put into the result he&pif v contains all the know v is the ancestor of, andv,, we need to aggregate
required keywords and its SLCA probabilifyr® (v) is larger the upper bounds af, andwvy to v7. As such,d; is decreased
than thek-th largest probability ik andv is an ordinary node. to (1 - Pr§)*(1 - Pr{)*(1 - Pr§). At this moment,S has
And then the keyword distributions (except the full keywortbecome empty while UBMap contains three new candidates
distribution) of v will be promoted to its parent(v). If vis v, v4, andosr.
not an ordinary node, we directly promote all the keyword Assume we havel, > d2. vy Will be chosen as the
distributions ofv and the path upper bound to its pargt), promising candidate because its upper bound must be larger
by which the false positive SLCA candidates can be skippeithan that of its ancestar,. After we process,, we can get its

To compute the upper boundl of p(v), we need add the SLCA probability Pr{’. Next, we need to compute the upper
constraint ofv to p(v) by multiplying (1- Pr(v)) according bound ofvs that is the parent ob,.

Pr&..(v) < Pr(path,_.,) * (1 —

slca




Sincewv; is the ancestor of;, we should update the uppetlies in Line 18 in Algorithm 1, at which ComputeSLCAProb-
bound ofwv; by using the upper bound af, and its SLCA ability() will be terminated after node in stack is processed,
G . .
probability Pr$. As such,d; = &7 *(54*6&)_ And we know rather than running to the empty of the stack as Algorithm 1.

v2 I & descendant afs. Hence, we need to aggregate to Line 6 - Line 19 provide the procedure of updating the path

vs, i.€., we havels = (0, — Pr{’)*d,. .
At the next stepy, is selected as the promising candidaté!PPE bounds) in UBMap when we promote the keyword

After it is processed, we also need to update the bounds Ofdistribution§ of & nodej o its p?‘re”‘P(“)- Before we mal'<e

: o x0a—PrSy _ Cha o the promotion, we first check if the nod€v) exists or is
andvG7, |.e.,g5 =0 (GT)G‘ (04 = PryY(d2=Pry) = (1 mpjied by a node in the delete set DeleteSep(if) appears
- Pry7 - Pri)*(1 - Pri’ - Pry). Similarly, we can computeé (o is implied by a node) in DeleteSet, we directly process
the bound ofvr. the next SLCA candidate it5. Otherwise, we are required
to update UBMap based on the current reseit(v) to be
returned by Function ComputeSLCAProbability(To do the

input: a keyword query{k1, ..., k,} and an encoded probabilistic ; ; ; ;
XML data teeT update, we first check if the candidaiév) has been inserted

Algorithm 2 EagerTopk Algorithm

output: top k ranked SLCA results into UBMap. If it exists, we can replace the old upper bound
1: load keyword node listd = {L;}, 1 <i <mn; value UBMapf(v)) of p(v) with UBMap(p(v)) - .P.TG(”)'

2: S = get_slca(L); Otherwise, we begin to consider whether it is qualifiedgfar)

3: UBMap: v — 4, DeleteSet, PiSet: vsica — P (Vsica); to be inserted into UBMap. As such, we need to collect the
4: for each candidate < S do aggregated upper bounY from the descendants gfv) in

5. Pr®(v) = ComputeSLCAProbability{) that is similar to

Line 2-Line 18 in Algorithm 1: UBMap as Line 12 while update the upper bounds of ancestors

of p(v) in UBMap as Line 14. After that, we can calculate the

6 if p(v) cannot be deleted using DeleteSietn :

7: set bothd, ands¥ as 1 for each SLCA candidate; path upper bound qi(v) by usings¥ * (6, — Pr¢(v)) where

8: if p(v) € UBMap then 0, is equal to 1. This is because we give the maximal upper
9: UBMap(p(v)) = UBMap(p(v)) * (4.- Pré(v)); bound 1 as a default value to each SLCA candidate at the
1(1) forifv e)bJ/B/I\/Itﬁgndo beginning. In the following procedure, the value &f will

12: Ig@ :%v * UBMap(v'); be updated dynamically based on the current computations.
13: else if v'/lp(v) then When the upper bound,, is worked out, we compare it
14: UBMap(@') = usMap(v’)*%éu—PrGw»; yvith the k-th largest proba_bility in the re;ult hedp If §,,)

15: Spiy = 8V * (8,-PrC (v)); v is larger, p(v) and d,(,) will be written into UBMap as a

16: if 6,0y is larger than k-th largest value iR then potential candidate for future processing.

17: UBMap.putp(v), 0p(w)); o )

18: else Next, in Line 20-Line 27, we repeatedly remove the most
19: put nodep(v) into DeleteSet; promising candidatev,, from UBMap at each time until
20: repeat UBMap becomes empty. The most promising candidate

21: v, d§, «— UBMap.removePromising();

oo if VergyPromisingNodezQ)ﬂruethen means that it has the hig_hest path upper bounq in UBMap,
3. Pr(v) = ComputeSLCAProbability(): i.e., 6, > Vd; € UBMap. Given a promising candidate we
24:  else first check if it is possible to generate a new SLCA result by
25: suspendy; utilizing Function VerifyPromisingNodeyj. In the function,
26:  using Line 6 - Line 19, bub, is the current value; we need to calculate the node upper bound according to

27: until UBMap is empty

28 return R: Property 4 and Property 5, and then compare it withkta

highest probability inR. If VerifyPromisingNode() returns
o i true, it says that the node upper boundwvois larger, i.e.,v
3) Descriptions of EagerTopK Algorithm: The pseudo- may generate a satisfied SLCA result. In this case, we can
code for the eager-preferred PrkS algorithm is shown i oss the keyword nodes that are the descendanisirf
Algorithm 2. A traditional keyword search algorithm can b, updated keyword node lists and calculate the keyword
employed to compute the initial SLCA candidate SetHere gisyrinutions of v. At the same time, the probed keyword
we adopt the methodyét_sica()) in [12]. nodes will be removed and the keyword node lists will be
And then, we scan the keyword node lists in a documepfyated. The procedure can be executed by calling Function

order to calculate the keyword distributions for each SLCﬁomputeSLCAProbability(). At the next step, we promote
candidate inS by calling Function ComputeSLCAProbabil-,, keyword distributions of to its parentp(v) and compute

ity(v). Similar to Line 2-Line 18 in Algorithm 1, Com- i, path upper bound of(v), as in Line 6 - Line 19.
puteSLCAProbability() can compute the keyword distribos

according to the cached keyword distribution tables that isWhen v cannot pass the node verification successfully, it
maintained by a hash map. After we process one node, says that cannot produce a new result anymore. As such, we
need to promote its keyword distributions to its parent Hase can skipv and directly probe its parentv). We use Line 6
the different strategies, i.e., IND, MUX, or Ordinary. Digd - Line 19 to compute the upper bound pfv) and update
procedure can be seen from Section IV-A. A little differencelBMap.




TABLE I
PROPERTIES OF PDOCUMENT

300
18 +|{M@ PrStack

250 16 1|0 Eager Top-k

W PrStack
O Eager Top-k

2 =]
£ =
ID | name size #IND  #MUX  #Ordinary E 200 % 12
Docl | XMark oM 16,040 16,785 169,506 E 150 £ 10
Doc2 20M 46,943 46,921 340,937 5 100 g‘ g
Doc3 40M 69,267 70,585 676,537 § QE) 4
Doc4 80M 179,862 178,709 1,443,987 x 50 =,
Doc5 | Modial | 1.2M 4,333 4,301 30,822 0 0
Doc6 | DBLP | 156M 859,608 875,586 3,333,331 X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
Keyword Queries Keyword Queries
TABLE Il )
KEYWORD QUERIES FOREACH DATASET (a) Time vs. Query (b) Memory Usage vs. Query
ID | Keyword Query ID | Keyword Query 30 25
X, | United States, Graduate X, | United States, Credit, ship 25 W PrStack W PrStack
X3 | Personal, Check, alexas X, | Alexas, ship O Eager Top-k 2 O Eager Top-k

X5 | internationally, ship

M; | muslim, multiparty M | organization, United States
Ms; | united states, islands M, | organization, pacific

Ms | chinese, polish
D; | Information, Retrieval, Database D> | XML, Keyword, Query

Response Time ms
Memory Usage MB

Ds | Query, Relational, Database D, | probabilistic, Query 0 0
Ds | stream, Query ML M2 M3 M4 M5 M1 M2 M3 M4 M5
Keyword Queries Keyword Queries
(c) Time vs. Query (d) Memory Usage vs. Query

V. EXPERIMENTAL STUDIES

We conduct extensive experiments to test the performance , ®
of our algorithms that were implemented in Java and run on
a 3.0GHz Intel Pentium 4 machine with 2GB RAM running
Windows XP.

35 W PrStack [OEager Top-k

W PrStack
O Eager Top-k

Memory Usage MB

Response Time seconds
-
@

A. Dataset and Queries

. D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
We use two real datasets, DBLP and Mondial 2, and Keyword Queries Keyword Queries
a synthetic XML benchmark dataset XMark for testing (&) Time vs. Query (f) Memory Usage vs. Query

the proposed algorithms. For XMark, we also generate four
datasets with different sizes. The three types of datasets a Fig. 4. Vary Query over Doc2, 5, 6 where k=10
selected based on their features. DBLP is a relatively avall

dataset of large size; Modial is a deep and complex, but

small dataset; XMark is a balanced dataset with varied depfyer Doc6. And the required tap number is set as 10. From
complex structure and varied size. Therefore, they arearhogne results, we can find that compared with PrStack algoyithm
as test datasets. EagerTopK algorithm can improve the time efficiency by at
For each XML dataset used, we generate the correspondjggst 50%. Sometimes, the second algorithm can be more than
probabilistic XML tree, using the same method as used Hltimes faster than the first one, e.§z, X5 in Figure 4(a)
[9]. We visit the nodes in the original XML tree in pre-ordefyng A7, M,, M; in Figure 4(c). This is because the total real
way. For each node visited, we randomly generate somgesylt numbers in Doc2 and Doc5 are not too large but the
distributional nodes with “IND” or “MUX" types as children nympers of some matched keyword nodes are large. In this
of v. Then, for the original children of, we choose some of case, PrStack algorithm continues to probe the rest keyword
them as the children of the new generated distributionaéaod,gdes while EagerTopK algorithm can be terminated early
and assign random probability distributions to these céild pased on the path upper bound. From Figure 4(e), we can
with the restriction that the sum of them for a MUX nod&ee that PrStack algorithm consumes about 16 - 31 seconds
is no greater than 1. For each dataset, the percentage offiethe given keyword queries while EagerTopK algorithm
distributional nodes is controlled in about 10% - 20% of thgyends about 7 - 13 seconds. Most of keywords occur in leaf
total nodes. The generated datasets are as follows in Table,hdes and we know the depth of DBLP data tree is not large.
And we randomly select terms and construct five keyworglyen this case is suitable to fit PrStack algorithm, EageTop
queries to be tested for each dataset, as shown in Table llhigorithm can be executed faster than PrStack algorithris Th
is because some of initial SLCA candidates hold the highest
robabilities.

®From Figure 4(b), Figure 4(d) and Figure 4(f), we can
see that EagerTopK consumes slightly more memory usage
http://dblp.uni-trier.de/xmi/ .than PrS'tack. This is because the keyword. distributionsef t
2hitp://www.dbis.informatik.uni-goettingen.de/MondiML intermediate results have to be cached until they are presnot
Shttp://monetdb.cwi.nl/xml/ to their parent nodes.

B. Evaluation of Different Keyword Queries

Figure 4 shows the experimental results when we run tﬁ
gueries X,- X5 over Doc2, M;-Ms; over Doc5, andD;-Ds



C. Evaluation of Different Top-k Values methods. If the highest ones can be found early, it will lead
to pruning more nodes.

—e—PrStack-X1 —=— Eager Top-k-X1 —e—PrStack-X1 —=— Eager Top-k-X1 1 q _ y
i x o BE D. Evaluation of Increasing P-Document Size
300 — 15
2 250 + — o
g 200 + 9 10 +
i @ —- PrStack-X1 —A—Eager Top-k-X1 —B-PrStack-X1 —A—Eager Top-k-X1
® 150 + — D: 000 —&— PrStack-X2 —*—Eager Top-k-X2 » —&—PrStack-X2 —-—Eager Top-k-X2
2 1 > 5.
2 100 s 5 o 800 2
R I - 5 £ 700 4 E 20
@ s £ 600 1 £
0 I I I I 0 I I I } F 500 4 E 15
0 10 20 30 40 50 0 10 20 30 40 50 & 400 + % 10
S 300 1 S
Topk Top k g 200 4 g 5
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0 0
i - - 1om 20M 40M 80M 10M 20M 40M 80M
(a) Time vs. Top-k (b) Memory Usage vs. Top-k . : . .
ocument size ocument Size
Pkt e Eager Top kL S PrSiackMI e Eager Top M (a) Time vs. Doc. Size (b) Memory Usage vs. Doc. Size
—a—PrStack-M2 = Eager Top-k-M2

—+—PrStack-M2 _ —%—Eager Top-k-M2

Fig. 6. Vary Document Sizes w.r.t. X1,X2, k=10

In this subsection, we take XMark dataset as an example
to test the performance of the two algorithms where the top

Response Time ms
Memory Usage MB

0 1 m S k value is specified as 10. We test all the five queries of
Topk Top k XMark dataset, but in this paper, we only show the results
_ of the queriesX; and X,. From Figure 6(a), we can see
(c) Time vs. Top-k (d) Memory Usage vs. Top-k

that both PrStack and EagerTopK increase linearly in resgon
time when the document size increases from 10MB to 80MB.
However, the increase of Eager TopK is much slower. The

40

8 40 comparison illustrates that the second algorithm can obtai
g7 e £ 50| — much better scalability than the first one when users are only
. 2 — : .
E20 1 ;4:,*;1 8 2 interested in a small number of results from a large data
2l Q:g;@ gl e source. Figure 6(b) shows the increasing trend of memory
g 2 usage when the document size is varied. Both algorithms have
0 + + + + + + + + . . . . .
6 10 2 2 4 50 S m w m w the similar increasing trend and PrStack can save a bit more
Top-k Top-k memory than EagerTopK due to the additional maintenance
(&) Time vs. Top-k () Memory Usage vs. Top-k of UBMap for potential SLCA candidates in EagerTopK.
Fig. 5. Vary Top-k w.r.t. X1-2, M1-2, D1-2 over Doc2, 5, 6 VI. RELATED WORK

Keyword Query in Ordinary XML Documents Recently,

Figure 5 shows the experimental results when we vary tkeyword search has been investigated extensively in XML
top k values from 10 to 40 and we select the first two keywordatabases. Given a keyword query and an XML data source,
queries to be tested for each dataset, /8., Xo over Doc2; most of related work [14], [15], [12], [16], [13] took LCAs
My, M, over Doc5; andD,, D, over Doc6. From the results, (lowest common ancestor) or SLCAs (smallest LCA) of the
we can find that both algorithms will consume more time witmatched nodes as the results to be returned. XRANK [14] and
the increase of the required tdp values. Especially, when Schema-Free XQuery [15] developed stack-based algorithms
processing quenX, over Doc2, we can see a sharp increagte compute SLCAs. [12] introduced the Indexed Lookup
when k is larger than 20 in Figure 5(a). This is because theager algorithm when the keywords appear with significantly
document contains 10 more or less results that have ther lardeferent frequencies and the Scan Eager algorithm when the
probabilities than the other candidates. In addition, majst keywords have similar frequencies. [16], [17] took the $mi
the remaining candidates have similar and small probébilisapproaches as [12]. But they focused on inferring the mganin
values. Therefore, in this case, Eager Topigorithm needs of returned results and discussed the result differentiati
to consume much more time when the required numberirs [18]. To make the results more meaningful, [19] and
increased, however, PrStack does not change a lot becd26} utilized the statistics of the underlying XML data to
it still scans the keyword node lists once. From Figure 5(lijentify the return node types. And [21] proposed a number
and Figure 5(d), we can find that memory usage nearly dogfsalgorithms for cleaning keyword queries optimally. [13]
not change when we increase the topalues. The trend of designed an MS approach to compute SLCAs for keyword
memory usage change a little when we evaluate keyword quepyeries in multiple ways. [22] took the Valuable LCA (VLCA)
D5 over DBLP in Figure 5(f). This is because we randomlgs results by avoiding the false positive and false negative
select the SLCA candidates to be computed when we get th@A and SLCA. [23] proposed an efficient algorithm called
SLCA candidate set based on traditional SLCA computationdexed Stack to find answers based on ELCA (Exclusive



LCA) semantics. In addition, there are other related works VIIl. A CKNOWLEDGMENTS
that process keyword search by integrating keywords into jignxin Lj. Chengfei Liu and Rui Zhou are supported

structured queries. [24] proposed a new query language XMy ARC Discovery Projects DP110102407 and DP0878405,
QL in which the structure of the query and keywords arghg \wei Wang is supported by ARC Discovery Projects

separated. [15] introduced a method to embed keywords if@09g87273, DP0881779 and DP0878405.

XQuery to process keyword search.

Probabilistic XML The topic of probabilistic XML has
been studied recently. Many models have been proposed]
together with structured query evaluations. Nierman ef23l. 2]
first introduced a probabilistic XML model, ProTDB, with the

probabilistic types IND -ndependant and MUX - mutually-  [3]
exclusive. Hung et al. [3] modeled the probabilistic XML
as directed acyclic graphs, supporting arbitrary distiims 4]

over sets of children. Keulen et al. [5] used a probabilistic
tree approach for data integration where its probabilitd anl
possibility nodes are similar to MUX and IND, respectively.
Abiteboul et al. [6] proposed a “fuzzy trees” model, wherel6]
nodes are associated with conjunctions of probabilistenev [7]
variables, they also gave a full complexity analysis of guer
and update on the “fuzzy trees” in [1]. Cohen et al. [25]
incorporated a set of constraints to express more complé%
dependencies among the probabilistic data. They also peapo [g]
efficient algorithms to solve the constraint-satisfactiqnery
evaluation, and sampling problem under a set of constrai%]
In [9], Kimelfeld et al. summarized and extended the proba-
bilistic XML models previously proposed, the expressiane(11]
and tractability of queries on different models are disedss[lz]
with the consideration of IND and MUX. [8] studied the
problem of evaluating twig queries over probabilistic XML
that may return incomplete or partial answers with respact i3
a probability threshold to users. [10] proposed and addtessg 4]
the problem of ranking top-k probabilities of answers of a
twig query. In summary, all the above work focused on “T?s]
discussions of probabilistic XML data model and/or stroetu
XML query, e.g., twig query. [16]

Different from all the above work, we addressed the problepyy,
of keyword search in probabilistic XML data. 8]

[19]
VII. CONCLUSIONS
[20]

In this paper, we have addressed the problem of top-
k keyword search over a general probabilistic XML modeb1)
PrxXML{indmuz} - Given a probabilistic XML tredl’, a set of
keywords and a numbét, we have discussed the challenge@z]
to find £ SLCA answers with the highest probabilities. A strat-
egy have been proposed to compute the SLCA probabilitigs]
without generating possible worlds. Based on the strategy, [24
have proposed two efficient algorithms. The first algorithm,
PrStack, only needs to scan the keyword inverted lists once
and after that the SLCA probabilities for all the nodeg’ican [25)
be obtained. The second algorithm, EagerTopK, is specially
designed to cater for top-keyword search by effectively
pruning unsatisfied SLCA candidates using upper bounds. The
experiments have demonstrated efficiency of our algorithms
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